Holm Oak Quercus ilex L.

  • Elena Corredoira
  • Inmaculada Hernández
  • Marian Morcillo
  • Mª Teresa Martínez
  • Mar Ruiz-Galea
  • Mª José Cernadas
  • Noelia Ramírez-Martín
  • Mª Carmen San José
  • Isabel Arrillaga
  • Mariano Toribio
Chapter
Part of the Forestry Sciences book series (FOSC, volume 84)

Abstract

The holm oak is an evergreen tree species representative of Mediterranean forests. The largest populations of this species are in the Iberian Peninsula, forming the tree cover of an agro-silvo-pastoral system called “dehesa” in Spain and “montado” in Portugal. The high ecological and economic value of the species is of interest for rural development. The main current product are the acorns used for feeding Iberian black pigs, which are the basis of an important gastronomic industry. In addition, several bioactive compounds with new potential industrial applications in nutrition, pharmacology and cosmetics have been identified in acorns of oak species. Plantations with holm oak seedlings mycorrhized with Tuber melanosporum are been carried out for the production of the highly demanded black truffle. Vegetative propagation can be a main tool in the domestication of this forest species. Cloning plants from tissues of adult donor trees is desirable because selection is more reliable at mature stages. The present chapter deals with plant regeneration protocols by somatic embryogenesis from tissues of adult trees. The induction in male catkins, developing ovules and apexes and expanding leaves from in vitro cultured shoots is described. A description of methods for the cryopreservation of embryogenic lines is also provided. 

Notes

Acknowledgements

This work is being supported by research projects co-financed by the Spanish Government and the EU (AGL2013-47400-C4 and AGL2016-76143-C4).

References

  1. Arrillaga I, Morcillo M, Cano M, Sales E, Peris JB, Segura J, Orlando L, Alborch A, Cano V, Corredoira E, Martínez MT, Cernadas MJ, Montenegro R, Vieitez FJ, Nisa M, Ramírez N, Hernández I., Ruiz-Galea M, González-Cabrero N, Celestino C, Montalbán I, Alegre J, Ballester A, Moncaleán P, San-José MC, Toribio M (2017) Increasing resilience in forest tree species: a possible additional advantage for somatic embryogenesis technology. In: Proceedings 4th international conference of the IUFRO working party 2.09.02 “Development and application of vegetative propagation technologies in plantation forestry to cope with a changing climate and environment”. 19–23 Sept 2016. La Plata, Buenos Aires, ArgentinaGoogle Scholar
  2. Barra Jiménez A (2015) Development of somatic embryogenesis for cloning and conservation of mature holm oak trees (Quercus ilex L.). Ph.D. Thesis, Polytechnic University of Madrid, SpainGoogle Scholar
  3. Barra-Jiménez A, Blasco M, Ruiz-Galea M, Celestino C, Alegre J, Arrillaga I, Toribio M (2014) Cloning mature holm oak trees by somatic embryogenesis. Trees 28:657–667.  https://doi.org/10.1007/s00468-014-0979-0CrossRefGoogle Scholar
  4. Barra-Jiménez A, Aronen TS, Alegre J, Toribio M (2015) Cryopreservation of embryogenic tissues from mature holm oak trees. Cryobiology 70:217–225.  https://doi.org/10.1016/j.cryobiol.2015.02.006CrossRefPubMedGoogle Scholar
  5. Blasco M, Barra A, Brisa C, Corredoira E, Segura J, Toribio M, Arrillaga I (2013) Somatic embryogenesis in holm oak male catkins. Plant Growth Regul 71:261–270.  https://doi.org/10.1007/s10725-013-9826-3CrossRefGoogle Scholar
  6. Corredoira E, Toribio M, Vieitez AM (2014) Clonal propagation via somatic embryogenesis in Quercus spp. In: Ramawat KG, Mérillon JM, Ahuja MR (ed) Tree biotechnology (chapter 10). CRC Press, Boca Raton, FL, pp. 262–302. ISBN: 13: 978-1-4665-9714-3Google Scholar
  7. Corredoira E, San José MC, Vieitez AM, Allona I, Aragoncillo C, Ballester A (2016) Agrobacterium-mediated transformation of European chestnut somatic embryos with a Castanea sativa (Mill.) endochitinase gene. New Forest 47:669–684.  https://doi.org/10.1007/s11056-016-9537-5CrossRefGoogle Scholar
  8. de Sampaio e Paiva Camilo-Alves C, da Clara MIE, de Almeida Ribeiro NMC (2013) Decline of Mediterranean oak trees and its association with phytophthora cinnamomi: a review. Eur J Forest Res 132:411–432.  https://doi.org/10.1007/s10342-013-0688-zCrossRefGoogle Scholar
  9. Delzon S, Urli M, Samalens J-C, Lamy J-B, Lischke H, Sin F, Zimmermann NE, Porté AJ (2013) Field evidence of colonisation by Holm oak, at the northern margin of its distribution range, during the Anthropocene period. PLoS ONE 8(11):e80443.  https://doi.org/10.1371/journal.pone.0080443CrossRefPubMedPubMedCentralGoogle Scholar
  10. Favre JM, Juncker B (1989) Variations in expression of episodic growth by in vitro cultured shoots of oak (Quercus robur L.). Ann Sci For 46:206s–210s.  https://doi.org/10.1051/forest:19890548CrossRefGoogle Scholar
  11. Feder N, O’Brien TP (1968) Plant microtechnique: some principles and new methods. Am J Bot 55:123–142CrossRefGoogle Scholar
  12. Gresshoff PM, Doy CH (1972) Development and differentiation of haploid Lycopersicon esculentum. Planta 107:161–170.  https://doi.org/10.1007/BF00387721CrossRefPubMedPubMedCentralGoogle Scholar
  13. Jensen WA (1962) Botanical histochemistry. W.H. Freeman and Co., San FranciscoGoogle Scholar
  14. Jiménez JA, Alonso-Blázquez N, López-Vela D, Celestino C, Toribio M, Alegre J (2011) Influence of culture vessel characteristics and agitation rate on gaseous exchange, hydrodynamic stress, and growth of embryogenic cork oak (Quercus suber L.) cultures. In Vitro Cell Dev Biol Plant 47:578–588.  https://doi.org/10.1007/s11627-011-9399-7CrossRefGoogle Scholar
  15. Jiménez J, López-Vela D, Ruiz-Galea M, Celestino C, Toribio M, Alegre J (2013) Embryogenic suspensions of cork oak: the first step towards mass propagation. Trees 27:13–23.  https://doi.org/10.1007/s00468-012-0763-yCrossRefGoogle Scholar
  16. L’Helgoual’ch M, Espagnac H (1987) Premières observations sur les capacités de rhizogénèse adventive du chêne vert (Quercus ilex L.). Ann Sci For 44:325–334.  https://doi.org/10.1051/forest:19870304CrossRefGoogle Scholar
  17. Lelu-Walter M-A, Thompson D, Harvengt L, Sanchez L, Toribio M, Pâques LE (2013) Somatic embryogenesis in forestry with a focus on Europe: state-of-the-art, benefits, challenges and future direction. Tree Genet Genomes 9:883–899.  https://doi.org/10.1007/s11295-013-0620-1CrossRefGoogle Scholar
  18. Liñán J, Cantos M, Troncoso J, García JL, Fernández A, Troncoso A (2011) Some propagation methods for cloning holm oak (Quercus ilex L.) plants. Cent Eur J Biol 6:359–364.  https://doi.org/10.2478/s11535-011-0007-yCrossRefGoogle Scholar
  19. Lloyd GB, McCown BH (1980) Commercially feasible micropropagation of mountain laurel (Kalmia latifolia) by use of shoot tip culture. Proc Int Plant Propagators’ Soc 30:421–427Google Scholar
  20. Mallón R, Covelo P, Vieitez AM (2012) Improving secondary embryogenesis in Quercus robur: application of temporary immersion for mass propagation. Trees 26:731–741.  https://doi.org/10.1007/s00468-011-0639-6CrossRefGoogle Scholar
  21. Mauri PV, Manzanera, JA (2005) Protocol of somatic embryogenesis: holm oak (Quercus ilex L.). In: Jain SM, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants. Springer Netherlands, Dordrecht, pp 469–482.  https://doi.org/10.1007/1-4020-2985-3_37
  22. Martínez MT, Viéitez AM, Corredoira E (2015) Improved secondary embryo production in Quercus alba and Q. rubra by activated charcoal, silver thiosulphate and sucrose: influence of embryogenic explant used for subculture. Plant Cell Tiss Organ Cult 121:31–546.  https://doi.org/10.1007/s11240-015-0722-6CrossRefGoogle Scholar
  23. Martínez MT, San José MC, Vieitez AM, Cernadas MJ, Ballester A, Corredoira E (2017) Propagation of mature Quercus ilex L.(holm oak) trees by somatic embryogenesis. Plant Cell Tiss Organ Cult 131:321–333.  https://doi.org/10.1007/s11240-017-1286-4CrossRefGoogle Scholar
  24. Mauri PV, Manzanera JA (2003) Induction, maturation and germination of holm oak (Quercus ilex L.) somatic embryos. Plant Cell Tiss Organ Cult 74:229–235.  https://doi.org/10.1023/A:1024072913021CrossRefGoogle Scholar
  25. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497.  https://doi.org/10.1111/j.1399-3054.1962.tb08052.xCrossRefGoogle Scholar
  26. Park YS (2014) Conifer somatic embryogenesis and multi-varietal forestry. In: Fenning T (ed) Challenges and opportunities for the world’s forests in the 21st century. Forestry Sciences, pp 425–439. Springer Netherlands, Dordrecht.  https://doi.org/10.1007/978-94-007-7076-8_17Google Scholar
  27. Rey AI, López-Bote CJ (2014) Alpha-tocopherol stereoisomer analysis as discriminant method for distinguishing Iberian pig feed intake during the fattening phase. Food Chem 142:342–348.  https://doi.org/10.1016/j.foodchem.2013.07.055CrossRefPubMedGoogle Scholar
  28. Reyna S, Garcia-Barreda S (2014) Black truffle cultivation: a global reality. For Syst 23:317–328.  https://doi.org/10.5424/fs/2014232-04771CrossRefGoogle Scholar
  29. Sá-Sousa P (2014) The Portuguese montado: conciliating ecological values with human demands within a dynamic agroforestry system. Ann For Sci 71:1–3.  https://doi.org/10.1007/s13595-013-0338-0CrossRefGoogle Scholar
  30. Savill PS, Kanowski PJ (1993) Tree improvement programs for European oaks: goals and strategies. Annals des Sciences Forestières 50:368s–383sCrossRefGoogle Scholar
  31. Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell culture. Can J Bot 50:199–204.  https://doi.org/10.1139/b72-026CrossRefGoogle Scholar
  32. Vinha AF, Costa ASG, Barreira JC, Pacheco R, Oliveira MBP (2016) Chemical and antioxidant profiles of acorn tissues from Quercus spp.: potential as new industrial raw materials. Ind Crops Prod 94:143–151.  https://doi.org/10.1016/j.indcrop.2016.08.027CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Elena Corredoira
    • 1
  • Inmaculada Hernández
    • 2
  • Marian Morcillo
    • 3
  • Mª Teresa Martínez
    • 1
  • Mar Ruiz-Galea
    • 2
  • Mª José Cernadas
    • 1
  • Noelia Ramírez-Martín
    • 2
  • Mª Carmen San José
    • 1
  • Isabel Arrillaga
    • 3
  • Mariano Toribio
    • 2
  1. 1.Instituto de Investigaciones Agrobiológicas de Galicia – CSICSantiago de Compostela (Coruña)Spain
  2. 2.Research Institute of Madrid for Food, Agriculture and Rural Development (IMIDRA)Finca “El Encín”Alcalá de Henares (Madrid)Spain
  3. 3.ERI Biotecmed, Department of Plant BiologyUniversity of ValenciaBurjassot (Valencia)Spain

Personalised recommendations