Aleppo pine Pinus halepensis Mill.

  • Cátia Pereira
  • Itziar A. Montalbán
  • Sandra Isabel Correia
  • Jorge Canhoto
  • Paloma Moncaleán
Chapter
Part of the Forestry Sciences book series (FOSC, volume 84)

Abstract

Aleppo pine (Pinus halepensis Mill.) is a medium size tree (20–40 m) that can display a shrubby phenotype when growing on harsh conditions (Eckenwalder, 2009). Female cones

Notes

Acknowledgements

This research was funded by MINECO (Spanish Government) project (AGL2013-4700-C4-2R; AGL2016-76143-C4-3R) and DECO (Basque Government).

References

  1. Aitken-Christie J, Singh AP, Davies H (1988) Multiplication of meristematic tissue: a new tissue culture system for radiata pine. In: Hanover JW, Keathley DE (eds) Genetic manipulation of woody plants. Plenum, New York, pp 413–432CrossRefGoogle Scholar
  2. Bonga JM, Klimaszewska KK, von Aderkas P (2010) Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tissue Org Cult 100:241–254CrossRefGoogle Scholar
  3. Botella L, Santamaría O, Diez JJ (2010) Fungi associated with the decline of Pinus halepensis in Spain. Fungal Divers 40:1–11CrossRefGoogle Scholar
  4. Calvo L, García-Domínguez C, Naranjo A, Arévalo JR (2013) Effects of light/darkness, thermal shocks and inhibitory components on germination of Pinus canariensis, Pinus halepensis and Pinus pinea. European J For Res 132:909–917CrossRefGoogle Scholar
  5. Eckenwalder JE (2009) Conifers of the world—the complete reference. Timber Press, PortlandGoogle Scholar
  6. García-Mendiguren O, Montalbán IA, Goicoa T, Ugarte MD, Moncaleán P (2016) Environmental conditions at the initial stages of Pinus radiata somatic embryogenesis affect the production of somatic embryos. Trees 30:949–958CrossRefGoogle Scholar
  7. Gil L, Aránzazu PM (1993) Pines as basic species for restoration of forests in the Mediterranean environment. Ecología 7:113–125Google Scholar
  8. Gupta PK, Durzan DJ (1985) Shoot multiplication from mature trees of Douglas fir and sugar pine. Plant Cell Rep 4:177–179CrossRefGoogle Scholar
  9. Hargreaves CL, Reeves CB, Find JI, Gough K, Josekutty P, Skudder DB, van der Maas SA, Sigley MR, Menzies MI, Low CB, Mullin TJ (2009) Improving initiation, genotype capture, and family representation in somatic embryogenesis of Pinus radiata by a combination of zygotic embryo maturity, media, and explant preparation. Can J For Res 39:1566–1574CrossRefGoogle Scholar
  10. Klein T, Cohen S, Yakir D (2011) Hydraulic adjustments underlying drought resistance of Pinus halepensis. Tree Physiol 31:637–648CrossRefGoogle Scholar
  11. Maestre FT, Cortina J (2004) Are Pinus halepensis plantations useful as a restoration tool in semiarid Mediterranean areas? Forest Ecol Manage 198:303–317CrossRefGoogle Scholar
  12. Montalbán IA, De Diego N, Moncaleán P (2010) Bottlenecks in Pinus radiata somatic embryogenesis: improving maturation and germination. Trees 24:1061–1071CrossRefGoogle Scholar
  13. Montalbán IA, De Diego N, Igartua EA, Setién A, Moncaleán P (2011) A combined pathway of somatic embryogenesis and organogenesis to regenerate radiata pine plants. Plant Biotechnol Rep 5:177CrossRefGoogle Scholar
  14. Montalbán IA, Setién-Olarra A, Hargreaves CL, Moncaleán P (2013) Somatic embryogenesis in Pinus halepensis mill: an important ecological species from the Mediterranean forest. Trees 27:1339–1351CrossRefGoogle Scholar
  15. Montero JL, Alcanda P (1993) Reforestación y biodiversidad. Montes 33:57–76Google Scholar
  16. Oliveras I, Martínez-Vilalta J, Jimenez-Ortiz T, Lledó MJ, Escarré A, Piñol J (2003) Hydraulic properties of Pinus halepensis, Pinus pinea and Tetraclinis articulata in a dune ecosystem of Eastern Spain. Plant Ecol 169:131–141CrossRefGoogle Scholar
  17. Osem Y, Yavlovich H, Zecharia N, Atzmon N, Moshe Y, Schiller G (2013) Fire-free natural regeneration in water limited Pinus halepensis forests: a silvicultural approach. European J For Res 132:679–690CrossRefGoogle Scholar
  18. Park YS, Barrett JD, Bonga JM (1998) Application of somatic embryogenesis in high-value clonal forestry: development, genetic control, and stability of cryopreserved clones. In Vitro Cell Dev Biol—Plant 34:231–239CrossRefGoogle Scholar
  19. Pereira C, Montalbán IA, García-Mendiguren O, Goicoa T, Ugarte D, Correia S, Canhoto JM, Moncaleán P (2016) Pinus halepensis somatic embryogenesis is affected by the physical and chemical conditions at the initial stages of the process. J For Res 21:143–150CrossRefGoogle Scholar
  20. Puértolas Simón J, Prada Sáez MA, Maldonado JC, Palá JO, Del Campo AD (2012) Pinus halepensis mill. In: García JP, Cerrillo RM, Peragón JL, Sáez MA, Hierro RS. (eds) Producción y manejo de semillas y plantas forestales. Organismo Autónomo Parques Nacionales Ministerio de Agricultura Alimentación y Medio Ambiente, España, p 885–890Google Scholar
  21. Quoirin M, Lepoivre P (1977) Études des millieu adaptés aux cultures in vitro de Prunus. Acta Hortic 78:437–442CrossRefGoogle Scholar
  22. Smith DR (1996) Growth medium US patent number 5(565):355Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Cátia Pereira
    • 1
  • Itziar A. Montalbán
    • 2
  • Sandra Isabel Correia
    • 1
  • Jorge Canhoto
    • 1
  • Paloma Moncaleán
    • 2
  1. 1.Department of Life SciencesCentro de Ecologia Funcional, University of CoimbraCoimbraPortugal
  2. 2.Centro de Arkaute, Neiker-TecnaliaVitoria-GasteizSpain

Personalised recommendations