Advertisement

Machine Learning to Optimize Additive Manufacturing Parameters for Laser Powder Bed Fusion of Inconel 718

  • Branden KappesEmail author
  • Senthamilaruvi Moorthy
  • Dana Drake
  • Henry Geerlings
  • Aaron Stebner
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Approximately 3600 samples have been printed to characterize the build parameters for laser powder bed fusion (L-PBF) fabrication of Inconel 718. The tested samples connect pore formation to part orientation, part location and the use of recycled powder. These data serve as the basis for development of a Random Forest Network machine learning (ML) model capable of two-way modeling of process–property and process–structure relationships. These results show how common procedural steps in the setup and execution of L-PBF effect porosity, particularly the formation of keyhole and lack of fusion (LOF) defects, and how data collection, processing, and validation can expose even subtle connections between input features and output parameters using a general ML framework.

Keywords

Additive manufacturing Laser powder bed fusion Inconel Machine learning X-ray computed tomography Porosity Powder morphology 

Notes

Acknowledgements

This work was supported by the Colorado Office of Economic Development and International Trade (COEDIT) and the Department of Defense Office of Economic Adjustment. One author, BK, would like to thank Ms. Elise Mutz for her assistance in creating Fig. 5 and Citrine Informatics for enabling the RFN analysis and Fig. 9.

References

  1. 1.
    Bormann T, Müller B, Schinhammer M, Kessler A, Thalmann P, De Wild M (2005) Microstructure of selective laser melted nickel-titanium. Materials Charact 94:189–202.  https://doi.org/10.1016/j.matchar.2014.05.017
  2. 2.
    Breiman L (1996) Technical note: some properties of splitting criteria. Mach Learn 24:41–47.  https://doi.org/10.1007/BF00117831
  3. 3.
    Breiman L (2001) Random forests. Mach Learn 45(1):5–32.  https://doi.org/10.1023/A:1010933404324
  4. 4.
    Dadbakhsh S, Vrancken B, Kruth JP, Luyten J, Van Humbeeck J (2016) Texture and anisotropy in selective laser melting of NiTi alloy. Mater Sci Eng A 650:225–232.  https://doi.org/10.1016/j.msea.2015.10.032
  5. 5.
    Dehoff RR, Kirka MM, Sames WJ, Bilheux H, Tremsin AS, Lowe LE, Babu SS (2015) Site specific control of crystallographic grain orientation through electron beam additive manufacturing. Mater Sci Technol 31(8):931–938.  https://doi.org/10.1179/1743284714Y.0000000734. http://www.tandfonline.com/doi/full/10.1179/1743284714Y.0000000734
  6. 6.
    Francois MM, Sun A, King WE, Henson NJ, Tourret D, Bronkhorst CA, Carlson NN, Newman CK, Haut T, Bakosi J, Gibbs JW, Livescu V, Vander Wiel SA, Clarke AJ, Schraad MW, Blacker T, Lim H, Rodgers T, Owen S, Abdeljawad F, Madison J, Anderson AT, Fattebert JL, Ferencz RM, Hodge NE, Khairallah SA, Walton O (2017) Modeling of additive manufacturing processes for metals: challenges and opportunities. Curr Opin Solid State Mater Sci 21(4):198–206.  https://doi.org/10.1016/j.cossms.2016.12.001
  7. 7.
    Geerlings, H (2018) TRACR: a framework for automated analysis of 2D and 3D image data. https://github.com/csm-adapt/tracr/tree/master/tracr
  8. 8.
    Jia Q, Gu D (2014) Selective laser melting additive manufacturing of Inconel 718 superalloy parts: densification, microstructure and properties. J Alloys Compd 585:713–721 (2014).  https://doi.org/10.1016/j.jallcom.2013.09.171
  9. 9.
    Kirka MM, Lee Y, Greeley DA, Okello A, Goin MJ, Pearce MT, Dehoff RR (2017) Erratum to: strategy for texture management in metals additive manufacturing. JOM 69(3):523–531.  https://doi.org/10.1007/s11837-017-2264-3. JOM 69(5):948 (2017).  https://doi.org/10.1007/s11837-017-2297-7
  10. 10.
    Kittler J, Illingworth J (1985) On threshold selection using clustering criteria. IEEE Trans Syst Man Cybern (5):652–655.  https://doi.org/10.1109/TSMC.1985.6313443. https://ieeexplore.ieee.org/document/6313443/
  11. 11.
    Moorthy S (2018) Modeling and characterization of mechanical properties in laser powder bed fusion additive manufactured Inconel 718. Master of science, Colorado School of MinesGoogle Scholar
  12. 12.
    Mower TM, Long MJ (2016) Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Mater Sci Eng A 651.  https://doi.org/10.1016/j.msea.2015.10.068
  13. 13.
    Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66.  https://doi.org/10.1109/TSMC.1979.4310076, http://ieeexplore.ieee.org/document/4310076/
  14. 14.
    Roehling TT, Wu SS, Khairallah SA, Roehling JD, Soezeri SS, Crumb MF, Matthews MJ (2017) Modulating laser intensity profile ellipticity for microstructural control during metal additive manufacturing. Acta Mater 128:197–206.  https://doi.org/10.1016/j.actamat.2017.02.025
  15. 15.
    Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 61(5):315–360.  https://doi.org/10.1080/09506608.2015.1116649
  16. 16.
    Seifi M, Salem A, Beuth J, Harrysson O, Lewandowski JJ (2016) Overview of materials qualification needs for metal additive manufacturing. Jom 68(3):747–764.  https://doi.org/10.1007/s11837-015-1810-0
  17. 17.
    Slotwinski JA, Garboczi EJ, Stutzman PE, Ferraris CF, Watson SS, Peltz MA (2014) Characterization of metal powders used for additive manufacturing. J Res Nat Inst Stand Technol 119:460.  https://doi.org/10.6028/jres.119.018. http://nvlpubs.nist.gov/nistpubs/jres/119/jres.119.018.pdf
  18. 18.
    Speirs M, Wang X, Van Baelen S, Ahadi A, Dadbakhsh S, Kruth JP, Van Humbeeck J (2016) On the transformation behavior of NiTi shape-memory alloy produced by SLM. Shape Mem Superelasticity 2(4):310–316.  https://doi.org/10.1007/s40830-016-0083-y. http://link.springer.com/10.1007/s40830-016-0083-y
  19. 19.
    Tammas-Williams S, Withers PJ, Todd I, Prangnell PB (2017) The influence of porosity on fatigue crack initiation in additively manufactured titanium components. Sci Rep 7(1):1–13  https://doi.org/10.1038/s41598-017-06504-5
  20. 20.
    Tang M (2017) Inclusions, porosity, and fatigues of AlSi10Mg parts produced by selective laser melting. PhD, Carnegie Mellon University. http://repository.cmu.edu/dissertations/903
  21. 21.
    Wei HL, Mazumder J, DebRoy T (2015) Evolution of solidification texture during additive manufacturing. Sci Rep 5:1–7.  https://doi.org/10.1038/srep16446
  22. 22.
    Zeiss Microscopy, C (2017) ZEISS Xradia 520 Versa submicron X-ray imaging : extending the limits of exploration. https://www.zeiss.com/content/dam/Microscopy/us/download/pdf/Products/xradia520versa/xradia-520-versa-product-information.pdf

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Branden Kappes
    • 1
    Email author
  • Senthamilaruvi Moorthy
    • 1
  • Dana Drake
    • 1
  • Henry Geerlings
    • 1
  • Aaron Stebner
    • 1
  1. 1.Colorado School of MinesGoldenUSA

Personalised recommendations