Skip to main content

A Computational Model of the Electroslag Remelting (ESR) Process and Its Application to an Industrial Process for a Large Diameter Superalloy Ingot

  • Conference paper
  • First Online:
Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications

Abstract

This paper presents a comprehensive computational model for the prediction of the transient Electroslag Remelting (ESR ) process for cylindrical ingots based on a two-dimensional axisymmetric analysis. The model analyzes the behavior of the slag and growing ingot during the entire ESR process involving a hot-slag start with an initial transient, near-steady melting , hot-topping and subsequent solidification of the slag and ingot after melting ends. The results of model application to an industrial ESR process for a 1.12 m diameter nickel-iron-chromium superalloy and its validation are presented. They demonstrate the comprehensive capabilities of the model in predicting the behavior of the ingot and slag during the entire process and properties of the final ingot produced. Such analysis provides significant benefits for the optimization of existing process schedules and design of new processes for different alloys and ingot sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Patel AD (2003) Analytical model for electromagnetic fields in ESR and VAR processes. In: Lee PD et al (ed) Proceedings of liquid metal processing and casting, pp 205–214

    Google Scholar 

  2. Patel AD, O’Connell CJ (2017) An analysis of current flow in ESR slabs. In: Krane MJM et al (ed) Proceedings liquid metals processing and casting conference, pp 199–204, Sept 2017

    Google Scholar 

  3. Dilawari AH, Szekely J (1978) Heat transfer and fluid flow phenomena in electroslag refining. Metall Trans B 9(B):77–97

    Article  Google Scholar 

  4. Jardy J et al (1991) Magnetohydrodynamic and thermal behavior of electroslag remelting slags. Metall Trans B 22(B):111–120

    Article  Google Scholar 

  5. Choudhury M, Szekely J (1981) Modeling of fluid flow and heat transfer in industrial-scale ESR system. Ironm Steelm 5:225–232

    Google Scholar 

  6. Kelkar KM et al (2005) Computational modeling of the electroslag remelting (ESR) process for the production of ingots of high-performance alloys. In: Lee PD et al (ed) Proceedings of liquid metal processing and casting, pp 137–144, Sept 2005

    Google Scholar 

  7. Kharicha A et al (2010) Influence of the slag/pool interface on the solidification in an electroslag remelting process. Mater Sci Forum 649:229–236

    Article  CAS  Google Scholar 

  8. Kharicha A et al (2008) On the importance of electric currents flowing directly into the mould during an ESR process. Steel Res Int 79(8):632–636

    Article  CAS  Google Scholar 

  9. Kharicha A et al (2014) How to get a smooth ESR ingot surface? In: Proceedings of 2nd international conference ingot casting, rolling, forging. https://www.researchgate.net/publication/263775345_How_to_get_a_smooth_ESR_Ingot_surface.pdf

  10. Kharicha A et al (2015) Transient melting of an ESR electrode. In: Kharicha A et al (ed) Proceedings of liquid metals processing and casting, pp 111–118, Sept 2015

    Google Scholar 

  11. Weber V et al (2007) A comprehensive model of the electroslag remelting process: description and validation. In: Lee PD (ed) Proceedings 2007 international symposium on liquid metals processing and casting, pp 83:88, Sept 2007

    Google Scholar 

  12. Yanke J et al (2013) Predicting melting behavior of an industrial electroslag remelting ingot. In: Krane MJM et al (eds) Proceedings of liquid metals processing and casting, pp 47–55, Sept 2013

    Google Scholar 

  13. Fezi K et al (2013) Modeling macrosegregation during electroslag remelting of alloy 625. In: Krane MJM et al (eds) Proceedings of liquid metals processing and casting, pp 151–158, Sept 2013

    Google Scholar 

  14. Kelkar KM et al (2013) computational modeling of electroslag remelting (ESR) process used for the production of high-performance alloys. In: Krane MJM et al (eds) Proceedings of liquid metals processing and casting, pp 3–12, Sept 2013

    Google Scholar 

  15. Kharicha A et al (2011) 3D simulation of the melting during an electro-slag remelting process. EPD Congress 771–778:2011

    Google Scholar 

  16. Karimi-Sibaki E et al (2016) On validity of axisymmetric assumption for modeling an industrial scale electroslag remelting process. Adv Eng Mater 18(2):224–230

    Article  CAS  Google Scholar 

  17. Wang X, Li Y (2015) A comprehensive 3D mathematical model of the electroslag remelting process. Metal Mat Trans 46B:1837–1849

    Article  Google Scholar 

  18. O’Connell CJ et al (2017) Industrial-scale validation of a transient computational model for electro-slag remelting. In: Krane MJM et al (eds) Proceedings liquid metals processing and casting conference, pp 103–108, Sept 2017

    Google Scholar 

  19. MeltFlow-ESRTM Reference Manual, Innovative Research, LLC, 3025 Harbor Lane N., Suite 225, Plymouth, MN 55447 (2017). www.inresllc.com

  20. Bertram LA (1997) Quantitative simulations of superalloy VAR ingot at the macroscale. In: Mitchell A, Aubertin P (eds) Proceedings liquid metal processing and casting, pp 110–132, AVS 1997

    Google Scholar 

  21. Siegel R, Howell JR (1981) Thermal radiation heat transfer. Hemisphere Publishing Corporation, Washington

    Google Scholar 

  22. Brent AD et al (1988) Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Num Heat Trans 13:297–318

    Google Scholar 

  23. Yu Kuang-O (1984) Comparison of ESR-VAR processes—Part 1, Heat transfer characteristics of crucible. In: Bhat GK, Lherbier LW (eds) Proceedings vacuum metallurgy conference, pp 83–92

    Google Scholar 

  24. Auburtin P et al (2000) Freckle formation and freckle criterion in superalloy castings. Metal Mat Trans B 31(B):801–811

    Article  Google Scholar 

  25. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, Washington

    Google Scholar 

  26. Mills KC, Keene BJ (1981) Physicochemical properties of molten CaF2-based slags. Int Metals Rev 1:21–69

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanchan M. Kelkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kelkar, K.M., O’Connell, C.J. (2018). A Computational Model of the Electroslag Remelting (ESR) Process and Its Application to an Industrial Process for a Large Diameter Superalloy Ingot. In: Ott, E., et al. Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-89480-5_14

Download citation

Publish with us

Policies and ethics