Skip to main content

Abstract

Oxidation of Alloy 718 manufactured by electron beam melting (EBM) process has been undertaken in ambient air at 650, 700, and 800 °C for up to 168 h. At 800 °C, a continuous external chromia oxide enriched in (Cr, Ti , Mn, Ni) and an internal oxide that was branched structure of alumina formed, whereas at 650 and 700 °C, a continuous, thin and protective chromia layer was detected. The oxidation kinetics of the exposed EBM Alloy 718 followed the parabolic rate law with an effective activation energy of ~248 ± 22 kJ/mol in good agreement with values in the literature for conventionally processed chromia-forming Ni-based superalloys . The oxide scale formed on the surface perpendicular to the build direction was slightly thicker, and more adherent compared to the scale formed on the surface along the build direction, attributed to the varied grain texture in the two directions of the EBM -manufactured specimens. The increased oxygen diffusion and high Cr depletion found on the surface along the build direction were attributed to the fine grains and formation of vacancies/voids along this grain orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murr LE, Martinez E, Amato KN et al (2012) Fabrication of metal and alloy components by additive manufacturing: examples of 3D materials science. J Mater Res Technol 1:42–54. https://doi.org/10.1016/S2238-7854(12)70009-1

    Article  CAS  Google Scholar 

  2. Caiazzo F, Alfieri V, Corrado G, Argenio P (2017) Laser powder-bed fusion of Inconel 718 to manufacture turbine blades. 93:4023–4031. https://doi.org/10.1007/s00170-017-0839-3

  3. Afazov S, Okioga A, Holloway A, Denmark W, Triantaphyllou A, Smith S-A, Bradley-Smith L (2017) A methodology for precision additive manufacturing through compensation. Precis Eng 50:269–274. https://doi.org/10.1016/j.precisioneng.2017.05.014

    Article  Google Scholar 

  4. Dehoff RR, Kirka M, Sames WJ et al (2015) Site specific control of crystallographic grain orientation through electron beam additive manufacturing. Mater Sci Technol UK 31:931–938. https://doi.org/10.1179/1743284714Y.0000000734

    Article  CAS  Google Scholar 

  5. Murr LE (2015) Metallurgy of additive manufacturing: examples from electron beam melting. Addit Manuf 5:40–53. https://doi.org/10.1016/j.addma.2014.12.002

    Article  CAS  Google Scholar 

  6. Tillmann W, Schaak C, Nellesen J et al (2017) Hot isostatic pressing of IN718 components manufactured by selective laser melting. Addit Manuf 13:93–102. https://doi.org/10.1016/j.addma.2016.11.006

    Article  CAS  Google Scholar 

  7. Prasad K, Sarkar R, Ghosal P, Kumar V (2010) Tensile deformation behaviour of forged disc of IN 718 superalloy at 650 °C. Mater Des 31:4502–4507. https://doi.org/10.1016/j.matdes.2010.04.019

    Article  CAS  Google Scholar 

  8. Al-hatab KA, Al-bukhaiti MA, Krupp U, Kantehm M (2011) Cyclic oxidation behavior of IN 718 superalloy in air at high temperatures. Oxid Met 75:209–228. https://doi.org/10.1007/s11085-010-9230-6

    Article  CAS  Google Scholar 

  9. Zurek J, Young DJ, Essuman E et al (2008) Growth and adherence of chromia based surface scales on Ni-base alloys in high- and low-pO2 gases. Mater Sci Eng A 477:259–270. https://doi.org/10.1016/j.msea.2007.05.035

    Article  CAS  Google Scholar 

  10. Ostwald C, Grabke HJ (2004) Initial oxidation and chromium diffusion. I. Effects of surface working on 9–20% Cr steels. Corros Sci 46:1113–1127. https://doi.org/10.1016/j.corsci.2003.09.004

    Article  CAS  Google Scholar 

  11. Ul-Hamid A (2002) A microstructural study of preferential oxidation at the grain boundaries of Ni–Cr alloys. Oxid Met 57:217–230. https://doi.org/10.1023/A:1014818117073

    Article  CAS  Google Scholar 

  12. Amato KN, Gaytan SM, Murr LE et al (2012) Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Mater 60:2229–2239. https://doi.org/10.1016/j.actamat.2011.12.032

    Article  CAS  Google Scholar 

  13. Strondl A, Fischer R, Frommeyer G, Schneider A (2008) Investigations of MX and γ′/γ″ precipitates in the nickel-based superalloy 718 produced by electron beam melting. Mater Sci Eng A 480:138–147. https://doi.org/10.1016/j.msea.2007.07.012

    Article  CAS  Google Scholar 

  14. Sames WJ, Unocic KA, Dehoff RR et al (2014) Thermal effects on microstructural heterogeneity of Inconel 718 materials fabricated by electron beam melting. J Mater Res 29:1920–1930. https://doi.org/10.1557/jmr.2014.140

    Article  CAS  Google Scholar 

  15. Unocic KA, Kolbus LM, Dehoff RR et al (2014) High-temperature performance of UNS N07718 processed by additive manufacturing. In: Oak Ridge National Laboratory (ORNL); Center for Nanophase Materials Sciences (CNMS)

    Google Scholar 

  16. Jacob G, Brown CU, Donmez MA, Watson SS (2017) Effects of powder recycling on stainless steel powder and built material properties in metal powder bed fusion processes. Adv Manuf Ser NIST AMS. 100-6

    Google Scholar 

  17. Azadian S, Wei L-Y, Warren R (2004) Delta phase precipitation in Inconel 718. Mater Charact 53:7–16. https://doi.org/10.1016/j.matchar.2004.07.004

    Article  CAS  Google Scholar 

  18. Lai GY (2007) High-temperature corrosion and materials applications. ASM International

    Google Scholar 

  19. Wang X, Fan F, Szpunar JA, Zhang L (2015) Influence of grain orientation on the incipient oxidation behavior of Haynes 230 at 900°C. Mater Charact 107:33–42. https://doi.org/10.1016/j.matchar.2015.06.029

    Article  CAS  Google Scholar 

  20. Strondl A, Palm M, Gnauk J, Frommeyer G (2011) Microstructure and mechanical properties of nickel based superalloy IN718 produced by rapid prototyping with electron beam melting (EBM). Mater Sci Technol 27:876–883. https://doi.org/10.1179/026708309X12468927349451

    Article  CAS  Google Scholar 

  21. Mercelis P, Kruth J-P (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp J 12:254–265. https://doi.org/10.1108/13552540610707013

    Article  Google Scholar 

  22. Kantor B, Mason C, D’Souza N et al (2009) Influence of Al and Nb on castability of a Ni-base superalloy, IN713LC. Int J Cast Met Res 22:62–65. https://doi.org/10.1179/136404609X367344

    Article  CAS  Google Scholar 

  23. Latu-Romain L, Parsa Y, Mathieu S et al (2017) Towards the growth of stoichiometric chromia on pure chromium by the control of temperature and oxygen partial pressure. Corros Sci 126:238–246. https://doi.org/10.1016/j.corsci.2017.07.005

    Article  CAS  Google Scholar 

  24. Cruchley S, Evans HE, Taylor MP et al (2013) Chromia layer growth on a Ni-based superalloy: sub-parabolic kinetics and the role of titanium. Corros Sci 75:58–66. https://doi.org/10.1016/j.corsci.2013.05.016

    Article  CAS  Google Scholar 

  25. Chen JH, Rogers PM, Little JA (1997) Oxidation behavior of several chromia-forming commercial nickel-base superalloys. Oxid Met 47:381–410

    Article  CAS  Google Scholar 

  26. Sudbrack CK, Draper SL, Gorman TT et al (2012) Oxidation and the effects of high temperature exposures on notched fatigue life of an advanced powder metallurgy disk superalloy

    Google Scholar 

  27. Evans HE, Hilton DA, Holm RA, Webstert SJ (1978) The influence of a titanium nitride dispersion on the oxidation behavior of 20%Cr-25%Ni stainless steel. Oxid Met 12:473–485. https://doi.org/10.1007/BF00603805

    Article  CAS  Google Scholar 

  28. Blacklocks AN, Atkinson A, Packer RJ et al (2006) An XAS study of the defect structure of Ti-doped α-Cr2O3. Solid State Ion 177:2939–2944. https://doi.org/10.1016/j.ssi.2006.08.028

    Article  CAS  Google Scholar 

  29. Deodeshmukh VP, Matthews SJ, Klarstrom DL (2011) High-temperature oxidation performance of a new alumina-forming Ni–Fe–Cr–Al alloy in flowing air. Int J Hydrog Energy 36:4580–4587

    Article  CAS  Google Scholar 

  30. Rabbani F, Ward LP, Strafford KN (2000) A Comparison of the growth kinetics and scale morphology for three superalloys at 930 °C in air and low PO2 environments. Oxid Met 54:139–153. https://doi.org/10.1023/A:1004658814608

    Article  CAS  Google Scholar 

  31. Khanna AS (2002) Introduction to high temperature oxidation and corrosion. ASM International

    Google Scholar 

  32. Taylor MP, Evans HE, Stekovic S, Hardy MC (2012) The oxidation characteristics of the nickel-based superalloy, RR1000, at temperatures of 700–900 °C. Mater High Temp 29:145–150. https://doi.org/10.3184/096034012X13341417107382

    Article  CAS  Google Scholar 

  33. Kim D, Jang C, Ryu WS (2009) Oxidation characteristics and oxide layer evolution of alloy 617 and Haynes 230 at 900 °C and 1100 °C. Oxid Met 71:271–293. https://doi.org/10.1007/s11085-009-9142-5

    Article  CAS  Google Scholar 

  34. Dehoff RR, Kirka MM, List FA et al (2015) Crystallographic texture engineering through novel melt strategies via electron beam melting: Inconel 718. Mater Sci Technol U K 31:939–944. https://doi.org/10.1179/1743284714Y.0000000697

    Article  CAS  Google Scholar 

  35. Phaniraj MP, Kim D-I, Cho YW (2011) Effect of grain boundary characteristics on the oxidation behavior of ferritic stainless steel. Corros Sci 53:4124–4130. https://doi.org/10.1016/j.corsci.2011.08.020

    Article  CAS  Google Scholar 

  36. Bonfrisco LP, Frary M (2010) Effects of crystallographic orientation on the early stages of oxidation in nickel and chromium. J Mater Sci 45:1663–1671. https://doi.org/10.1007/s10853-009-4144-x

    Article  CAS  Google Scholar 

  37. Wang X, Szpunar JA, Zhang L (2015) Effect of surface crystallographic orientation on the oxidation behavior of Ni-based alloy. Appl Surf Sci 327:532–536. https://doi.org/10.1016/j.apsusc.2014.11.126

    Article  CAS  Google Scholar 

  38. Czerwinski F, Szpunar JA (1998) The influence of crystallographic orientation of nickel surface on oxidation inhibition by ceria coatings. Acta Mater 46:1403–1417. https://doi.org/10.1016/S1359-6454(97)00240-1

    Article  CAS  Google Scholar 

  39. Bès R, Gavarini S, Millard-Pinard N et al (2012) Influence of crystallographic orientation on the early stages of oxidation of polycrystalline titanium nitride. J Nucl Mater 427:415–417. https://doi.org/10.1016/j.jnucmat.2012.03.031

    Article  CAS  Google Scholar 

  40. Jia Q, Gu D (2014) Selective laser melting additive manufactured Inconel 718 superalloy parts: high-temperature oxidation property and its mechanisms. Opt Laser Technol 62:161–171. https://doi.org/10.1016/j.optlastec.2014.03.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Dunyong Deng and Mr. Jonas Olsson for their valuable help and advice in characterizing the samples. Dr. Chantal Sudbrack from QuesTek Innovations, LLC is greatly acknowledged for her comments/suggestions and input into the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeil Sadeghimeresht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sadeghimeresht, E. et al. (2018). Isothermal Oxidation Behavior of EBM-Additive Manufactured Alloy 718. In: Ott, E., et al. Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-89480-5_13

Download citation

Publish with us

Policies and ethics