Skip to main content

A Bicriteria Approximation Algorithm for the k-Center and k-Median Problems

  • Conference paper
  • First Online:
Approximation and Online Algorithms (WAOA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10787))

Included in the following conference series:

Abstract

The k-center and k-median problems are two central clustering techniques that are well-studied and widely used. In this paper, we focus on possible simultaneous generalizations of these two problems and present a bicriteria approximation algorithm for them with constant approximation factor in both dimensions. We also extend our results to the so-called incremental setting, where cluster centers are chosen one by one and the resulting solution must have the property that the first k cluster centers selected must simultaneously be near-optimal for all values of k.

S. Alamdari and D. Shmoys—Supported in part by NSF CCF-1526067, CMMI-1537394, and CCF-1522054.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aouad, A., Segev, D.: The ordered k-median problem: surrogate models and approximation algorithms. In submission

    Google Scholar 

  2. Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor approximation algorithm for the k-median problem. J. Comput. Syst. Sci. 65(1), 129–149 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gonzalez, T.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem. Math. Oper. Res. 10(2), 180–184 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hsu, W., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete Appl. Math. 1(3), 209–215 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, S., Svensson, O.: Approximating k-median via pseudo-approximation. SIAM J. Comput. 45(2), 530–547 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lin, G., Nagarajan, C., Rajaraman, R., Williamson, D.P.: A general approach for incremental approximation and hierarchical clustering. SIAM J. Comput. 39(8), 3633–3669 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mettu, R.R., Plaxton, C.G.: The online median problem. SIAM J. Comput. 32(3), 816–832 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soroush Alamdari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alamdari, S., Shmoys, D. (2018). A Bicriteria Approximation Algorithm for the k-Center and k-Median Problems. In: Solis-Oba, R., Fleischer, R. (eds) Approximation and Online Algorithms. WAOA 2017. Lecture Notes in Computer Science(), vol 10787. Springer, Cham. https://doi.org/10.1007/978-3-319-89441-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89441-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89440-9

  • Online ISBN: 978-3-319-89441-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics