Advertisement

The Asymptotic Price of Anarchy for k-uniform Congestion Games

  • Jasper de Jong
  • Walter Kern
  • Berend Steenhuisen
  • Marc UetzEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10787)

Abstract

We consider the atomic version of congestion games with affine cost functions, and analyze the quality of worst case Nash equilibria when the strategy spaces of the players are the set of bases of a k-uniform matroid. In this setting, for some parameter k, each player is to choose k out of a finite set of resources, and the cost of a player for choosing a resource depends affine linearly on the number of players choosing the same resource. Earlier work shows that the price of anarchy for this class of games is larger than 1.34 but at most 2.15. We determine a tight bound on the asymptotic price of anarchy equal to \(\approx \)1.35188. Here, asymptotic refers to the fact that the bound holds for all instances with sufficiently many players. In particular, the asymptotic price of anarchy is bounded away from 4 / 3. Our analysis also yields an upper bound on the price of anarchy <1.4131, for all instances.

Keywords

Congestion games Uniform matroid Asymptotic price of anarchy 

References

  1. 1.
    Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. In: Proceedings of 37th Annual ACM Symposium Theory Computing, pp. 57–66 (2005)Google Scholar
  2. 2.
    Colini-Baldeschi, R., Cominetti, R., Mertikopoulos, P., Scarsini, M.: On the asymptotic behavior of the price of anarchy: Is selfish routing bad in highly congested networks? https://arxiv.org/abs/1703.00927 (2017)
  3. 3.
    Colini-Baldeschi, R., Cominetti, R., Scarsini, M.: On the price of anarchy of highly congested nonatomic network games. In: Gairing, M., Savani, R. (eds.) SAGT 2016. LNCS, vol. 9928, pp. 117–128. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53354-3_10CrossRefGoogle Scholar
  4. 4.
    Braess, D.: Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung 12, 258–268 (1968). (German)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Caragiannis, I., Flammini, M., Kaklamanis, C., Kanellopoulos, P., Moscardelli, L.: Tight bounds for selfish and greedy load balancing. Algorithmica 61(3), 606–637 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion games. In: Proceedings of 37th Annual ACM Symposium on Theory Computing, pp. 67–73 (2005)Google Scholar
  7. 7.
    Correa, J., de Jong, J., de Keijzer, B., Uetz, M.: The curse of sequentiality in routing games. In: Markakis, E., Schäfer, G. (eds.) WINE 2015. LNCS, vol. 9470, pp. 258–271. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48995-6_19CrossRefGoogle Scholar
  8. 8.
    de Jong, J., Klimm, M., Uetz, M.: Efficiency of equilibria in uniform matroid congestion games. In: Gairing, M., Savani, R. (eds.) SAGT 2016. LNCS, vol. 9928, pp. 105–116. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53354-3_9CrossRefGoogle Scholar
  9. 9.
    Feldman, M., Immorlica, N., Lucier, B., Roughgarden, T., Syrgkanis, V.: The price of anarchy in large games. In: Proceedings of 48th Annual ACM Symposium Theory Computing, pp. 963–976 (2016)Google Scholar
  10. 10.
    Fotakis, D.: Stackelberg strategies for atomic congestion games. ACM Trans. Comput. Syst. 47, 218–249 (2010)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-49116-3_38Google Scholar
  12. 12.
    Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: A new model for selfish routing. Theor. Comput. Sci. 406(3), 187–206 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Pigou, A.C.: The Economics of Welfare. Macmillan, London (1920)Google Scholar
  14. 14.
    Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Internat. J. Game Theory 2(1), 65–67 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Roughgarden, T.: The price of anarchy is independent of the network topology. J. Comput. Syst. Sci. 67, 341–364 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Roughgarden, T., Tardos, É.: How bad is selfish routing? J. ACM 49(2), 236–259 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wardrop, J.G.: Some theoretical aspects of road traffic research. Proc. Inst. Civ. Eng. 1(3), 325–362 (1952)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jasper de Jong
    • 1
  • Walter Kern
    • 1
  • Berend Steenhuisen
    • 1
  • Marc Uetz
    • 1
    Email author
  1. 1.Faculty of Electrical Engineering, Mathematics and Computer ScienceUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations