Skip to main content

Industrial Applications of Yield Stress Fluids

  • Chapter
  • First Online:

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 583))

Abstract

Industry has been working with yield stress fluids for many years. In many cases they are known as viscoplastic fluids (VPFs).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See Aeschlimann and Beckett (2000) Measurements of the Casson parameters for a standard chocolate across 23 laboratories reported a 7-fold range in yield value.  

  2. 2.

    In a Bagley plot the overall pressure drop ΔP is plotted against L/D. A straight trend-line confirms that the wall shear stress is independent of pressure and the intercept gives the Bagley correction.

  3. 3.

    Much of this section is based on the PhD dissertation of Dean Barker (Univ. Cambridge 2008)

References

  • Aeschlimann, J. M., & Beckett, S. T. (2000). International inter-laboratory trials to determine the factors affecting the measurement of chocolate viscosity. Journal of Texture Studies, 31(5), 541–576.

    Article  Google Scholar 

  • Alba, K., & Frigaard, I. A. (2016). Dynamics of the removal of viscoplastic fluids from inclined pipes. Journal of Non-Newtonian Fluid Mechanics, 229, 43–58.

    Article  MathSciNet  Google Scholar 

  • Amarasinghe, A. D. U. S., & Wilson, D. I. (1998). Interpretation of paste extrusion data. Chemical Engineering Research and Design, 76(1), 3–8.

    Article  Google Scholar 

  • Assaad, J. J., Harb, J., & Maalouf, Y. (2016). Effect of vane configuration on yield stress measurements of cement pastes. Journal of Non-Newtonian Fluid Mechanics, 230, 31–42.

    Article  Google Scholar 

  • Balmforth, N. J., Frigaard, I. A., & Ovarlez, G. (2014). Yielding to stress: recent developments in viscoplastic fluid mechanics. Annual Review of Fluid Mechanics, 46, 121–146.

    Article  MathSciNet  Google Scholar 

  • Banfill, P.F.G. (2006) Rheology of fresh cement and concrete, Rheology Reviews, 61–130.

    Google Scholar 

  • Bardsley, M. A., & Bridgwater, J. (2012). Evaluation of liquid phase migration in pastes and gels. Industrial and Engineering Chemistry Research, 51, 1774–1781.

    Article  Google Scholar 

  • Barker, D. A., & Wilson, D. I. (2008). Rheology of a thermoplastic paste: from the melt to the mushy state. Chemical Engineering Science, 63, 1438–1448.

    Article  Google Scholar 

  • Barker, D.A. (2008) Thermal processing of highly filled suspensions, PhD Dissertation, University of Cambridge.

    Google Scholar 

  • Basterfield, R. A., Adams, M. J., & Lawrence, C. J. (2005). On the interpretation of orifice extrusion data for viscoplastic materials. Chemical Engineering Science, 60, 2599–2607.

    Article  Google Scholar 

  • Benbow, J.J. and Bridgwater, J. (1993) Paste flow and extrusion, publ. OUP.

    Google Scholar 

  • Bryan, M. P., Rough, S. L., & Wilson, D. I. (2015). Investigation of static zone formation and wall slip through sequential ram extrusion of contrasting micro-crystalline cellulose-based pastes. Journal of Non-Newtonian Fluid Mechanics, 220, 57–68.

    Article  MathSciNet  Google Scholar 

  • Cole, P. A., Asteriadou, K., Robbins, P. T., Owen, E. G., Montague, G. A., & Fryer, P. J. (2010). Comparison of cleaning of toothpaste from surfaces and pilot scale pipework. Food Bioproducts Processing, 88, 392–400.

    Article  Google Scholar 

  • Cox, B. G. (1962). On driving a viscous fluid out of a tube. Journal of Fluid Mechanics, 14, 81–96.

    Article  Google Scholar 

  • Curran, S. J., Hayes, R. E., Afacan, A., Williams, M. C., & Tanguy, P. A. (2002). Properties of carbopol solutions as models for yield-stress fluids. Journal of Food Science, 67, 176–180.

    Article  Google Scholar 

  • Kee, D., Code, R. K., & Turcotte, G. (1983). Flow properties of time-dependent foodstuffs. Journal of Rheology, 27, 581–604.

    Article  Google Scholar 

  • Dimakopoulos, Y., & Tsamopoulos, J. (2003). Transient displacement of a viscoplastic material by air in straight and suddenly constricted tubes. Journal of Non-Newtonian Fluid Mechanics, 112, 43–75.

    Article  Google Scholar 

  • De Souza Mendes, P. R., & Thompson, R. L. (2013). A unified approach to model elasto-viscoplastic yield-stress materials and apparent yield-stress fluids. Rheologica Acta, 52, 673–694.

    Article  Google Scholar 

  • Elhweg, B., Burns, I. W., Chew, Y. M. J., Martin, P. J., Russell, A. B., & Wilson, D. I. (2009). Viscous dissipation and apparent wall slip in capillary rheometry of ice cream. Food Bioproducts Processing, 87, 266–272.

    Article  Google Scholar 

  • Ferstl, H., Barbist, R., Rough, S. L., & Wilson, D. I. (2012). Influence of visco-elastic binder properties on ram extrusion of a hardmetal paste. Journal of Materials Science, 47(19), 6835–6848.

    Article  Google Scholar 

  • Glover, H. W., Brass, T., Bhagat, R. K., Davidson, J. F., Pratt, L., & Wilson, D. I. (2016). Cleaning of complex soil layers on vertical walls by fixed and moving impinging liquid jets. Journal of Food Engineering, 178, 95–109.

    Article  Google Scholar 

  • Gray, J. M. N. T., & Edwards, A. N. (2014). A depth-average μ(I) rheology for shallow granular free-surface flows. Journal of Fluid Mechanics, 755, 503–544.

    Article  MathSciNet  Google Scholar 

  • Horrobin, D. J., & Nedderman, R. M. (1998). Die entry pressure drops in paste extrusion. Chemical Engineering Science, 53(18), 3215–3225.

    Article  Google Scholar 

  • Horrobin, D. J. (1999) Theoretical aspects of paste extrusion, PhD Dissertation, University of Cambridge.

    Google Scholar 

  • Hu, H., & Argyropoulos, S. A. (1996). Mathematical modelling of solidification and melting: A review. Modelling and Simulation Materials Science and Engineering, 4, 371–396.

    Article  Google Scholar 

  • Jana, S., Ray, S., & Durst, F. (2007). A numerical method to compute solidification and melting processes. Applied Mathematical Modelling, 31, 93–119.

    Article  Google Scholar 

  • Jastrzebski, Z. D. (1967). Entrance effects and wall effects in an extrusion rheometer during the flow of concentrated suspensions. Industrial and Engineering Chemistry Fundamentals, 6(3), 445–454.

    Article  Google Scholar 

  • Jop, P., Forterre, Y., & Pouliquen, O. (2006). A constitutive relation for dense granular flows. Nature, 44, 727–730.

    Article  Google Scholar 

  • Martin, P. J., Wilson, D. I., & Bonnet, P. (2004). Rheological study of a talc-based paste for extrusion-granulation. Journal of the European Ceramic Society, 24(10–11), 3155–3168.

    Article  Google Scholar 

  • Martin, P. J., & Wilson, D. I. (2005). A critical assessment of the Jastrzebski interface condition for the capillary flow of pastes, foams and polymers. Chemical Engineering Science, 60, 493–502.

    Article  Google Scholar 

  • Mitsoulis, E. (2007). Flows of viscoplastic materials: Models and computations. Rheology Reviews, 64, 137–178.

    Google Scholar 

  • Mitsoulis, E., & Hatzikiriakso, S. G. (2009). Steady flow simulations of compressible PTFE paste extrusion under severe wall slip. Journal of Non-Newtonian Fluid Mechanics, 157, 26–33.

    Article  Google Scholar 

  • Nikkoo, M., & Gadala-Maria, F. (2014). Modelling radial filtration in squeeze flow of highly concentrated suspensions. Rheologica Acta, 53, 607–619.

    Article  Google Scholar 

  • Nikkoo, M., Khodabandehlou, K., Brozovsky, L., & Gadala-Maria, F. (2013) Normal stress distribution in highly concentrated suspensions undergoing squeeze flow, Rheologica Acta, 52, 155–163.

    Article  Google Scholar 

  • Nikkoo, M., Hofman, A., & Gadala-Maria, F. (2014). Correlation between radial filtration and normal stress distribution in highly concentrated suspensions undergoing constant-force squeeze flow. Rheologica Acta, 53, 303–314.

    Article  Google Scholar 

  • Nirmalkar, N., Chhabra, R. P., & Poole, R. J. (2013a). Numerical predictions of momentum and heat transfer characteristics from a heated sphere in yield stress fluids. Industrial and Engineering Chemistry Research, 52, 6848–6861.

    Article  Google Scholar 

  • Nirmalkar, N., Chhabra, R. P., & Poole, R. J. (2013b). Effect of shear-thinning behavior on heat transfer from a heated sphere in yield-stress fluids. Industrial and Engineering Chemistry Research, 52, 13490–13504.

    Article  Google Scholar 

  • O’Neill, R., McCarthy, H. O., Cunningham, E., Montufar, E., Ginebra, M-P., Wilson, D.I., Lennon, A., & Dunne, N. (2016). Extent and mechanism of phase separation during the surgical injection (extrusion) of calcium phosphate pastes, JoM: Materials in Medicine, 27, 29.

    Google Scholar 

  • Ortega-Avila, J. F., Perez-Gonzalez, J., Marin-Santibanez, B. M., Rodriguez-Gonzalez, F., Aktas, S., Malik, M., et al. (2016). Axial annular flow of a viscoplastic microgel with wall slip. Journal of Rheology, 60, 503–515.

    Article  Google Scholar 

  • Palabiyik, I., Olunloyo, B., Fryer, P. J., & Robbins, P. T. (2014). Flow regimes in the emptying of pipes filled with a Herschel-Bulkley fluid. Chemical Engineering Research and Design, 92, 2201–2212.

    Article  Google Scholar 

  • Patil, P. D., Feng, J. J., & Hatzikiriakos, S. G. (2006). Constitutive modeling and flow simulations of polytetrafluoroethylene (PTFE) paste extrusion. Journal of Non-Newtonian Fluid Mechanics, 134, 44–53.

    Article  Google Scholar 

  • Patel, M. J., Blackburn, S., & Wilson, D. I. (2007). Modelling of paste flows subject to liquid phase maldistribution. International Journal for Numerical Methods in Engineering, 72(10), 1157–1180.

    Article  Google Scholar 

  • Patel, M.J. (2008). Theoretical aspects of paste formulation for extrusion, PhD Dissertation, Univeristy of Cambridge.

    Google Scholar 

  • Pérez-González, J., López-Durán, J. L., Marín-Santibáñez, B. M., & Rodríguez-González, F. (2012). Rheo-PIV of a yield-stress fluid in a capillary with slip at the wall. Rheologica Acta, 51, 937–946.

    Article  Google Scholar 

  • Powell, J., & Blackburn, S. (2010). Co-extrusion of multi-layered ceramic micro-tubes for use as solid oxide fuel cells. Journal of the European Ceramic Society, 30, 2859–2870.

    Article  Google Scholar 

  • Putz, A. M. V., & Burghalea, T. I. (2009). The solid-fluid transition in a yield stress shear thinning physical gel. Rheologica Acta, 48, 673–689.

    Article  Google Scholar 

  • Rahman, L., Rowe, P., Cheyne, A., & Wilson, D. I. (2001). Ram extrusion of potato starch dough through multi-holed dies. Food and Bioproducts Processing, 80(1), 12–19.

    Article  Google Scholar 

  • Rough, S. L., Wilson, D. I., & Bridgwater, J. (2002). A model describing liquid phase migration within an extruding microcrystalline cellulose paste. Chemical Engineering Research and Design, 80, 701–714.

    Article  Google Scholar 

  • Roussel, N., & Lanos, C. (2004a). Particle fluid separation of dense suspensions: experimental measurement on squeezed clay paste. Journal of Rheology, 51, 493–515.

    Google Scholar 

  • Roussel, N., & Lanos, C. (2004b). Particle fluid separation in shear flow of dense suspensions: Experimental measurements on squeezed clay pastes. Applied Rheology, 14, 256–265.

    Google Scholar 

  • Sairamu, M., Nirmalkar, N., & Chhabra, R. P. (2013). Natural convection from a circular cylinder in confined Bingham plastic fluids. International Journal of Heat and Mass Transfer, 60, 567–581.

    Article  Google Scholar 

  • Sherwood, J. D. (2002). Liquid-solid relative motion during squeeze flow of pastes. Journal of Non-Newtonian Fluid Mechanics, 104, 1–32.

    Article  Google Scholar 

  • Wang, T. (2014). PhD Dissertation, University of Cambridge.

    Google Scholar 

  • Wilmot, R. B., Barbist, R., Ferstl, H., Gruber, C., Branstetter, W., Patel, M. J. & Wilson, D. I. (2009). Characterisation and design of wax-based hard metal extrusion processes, Plansee Seminar 2009, Vol. 9, Paper HM15, Plansee Group, Reutte, Austria.

    Google Scholar 

  • Wilson, D. I., & Rough, S. L. (2012). Paste engineering: Multi-phase materials and multi-phase flows. Canadian Journal of Chemical Engineering, 90(2), 277–289.

    Article  Google Scholar 

  • Wilson, D. I., Atkinson, P., Köhler, H., Mauermann, M., Stoye, H., Suddaby, K., et al. (2014). Cleaning of soft-solid soil layers on vertical and horizontal surfaces by coherent impinging liquid jets. Chemical Engineering Science, 109, 183–196.

    Article  Google Scholar 

  • Yoshimura, A., & Prud’homme, R. K. (1988). Wall slip corrections for Couette and parallel disk viscometers. Journal of Rheology, 32(1), 53–67.

    Article  Google Scholar 

  • Zhang, M., Mascia, S., Rough, S. L., Ward, R., Seiler, C., & Wilson, D. I. (2013). A novel lab-scale screen extruder for studying extrusion-spheronisation. International Journal of Pharmaceutics, 455, 285–297.

    Article  Google Scholar 

  • Zhao, U., Kumar, L., Paso, K., Ali, H., Safieva, J., & Sjöblom, J. (2012). Gelation and breakage behaviour of model wax-oil systems: rheological properties and model development. Industrial and Engineering Chemistry Research, 51, 8123–8133.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ian Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wilson, D.I. (2019). Industrial Applications of Yield Stress Fluids. In: Ovarlez, G., Hormozi, S. (eds) Lectures on Visco-Plastic Fluid Mechanics. CISM International Centre for Mechanical Sciences, vol 583. Springer, Cham. https://doi.org/10.1007/978-3-319-89438-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89438-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89437-9

  • Online ISBN: 978-3-319-89438-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics