Skip to main content

Rheology of Visco-Plastic Suspensions

  • Chapter
  • First Online:
Lectures on Visco-Plastic Fluid Mechanics

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 583))

Abstract

This chapter deals with the rheological properties of viscoplastic suspensions. In Sect. 2, we discuss the theoretical behavior of suspensions of rigid particles in linear and nonlinear media. In Sect. 3, we present appropriate model systems, experimental setups and methods. The main experimental observations are presented in Sect. 4: we present the evolution of the elastic, plastic, and flow properties with the particle volume fraction, and we discuss the emergence of a shear-dependent microstructure. Finally, shear-induced migration and its link with normal stress differences are briefly discussed in Sect. 5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We do not consider here the case of frictional materials.

  2. 2.

    Some aspects of the linear and nonlinear behavior of polydisperse suspensions are discussed in Vu et al. (2010).

  3. 3.

    For simplicity, we will use n to denote the index of both the suspending fluid and the suspension in the sequel.

References

  • Abbott, J. R., Tetlow, N., Graham, A. L., Altobelli, S. A., Fukushima, E., Mondy, L. A., et al. (1991). Experimental observations of particle migration in concentrated suspensions: Couette flow. Journal of Rheology, 35, 773–795.

    Article  Google Scholar 

  • Acrivos, A. (1995). Shear-induced particle diffusion in concentrated suspensions of non-colloidal particles? Bingham Award lecture, 1994. Journal of Rheology, 39, 813.

    Article  Google Scholar 

  • Altobelli, S. A., Givler, R. C., & Fukushima, E. (1991). Velocity and concentration measurements of suspensions by nuclear magnetic resonance imaging. Journal of Rheology, 35, 721–734.

    Article  Google Scholar 

  • Altobelli, S. A., Fukushima, E., & Mondy, L. A. (1997). Nuclear magnetic resonance imaging of particle migration in suspensions undergoing extrusion. Journal of Rheology, 41, 1105–1115.

    Article  Google Scholar 

  • Ancey, C., & Jorrot, H. (2001). Yield stress for particle suspensions within a clay dispersion. Journal of Rheology, 45, 297–319.

    Article  Google Scholar 

  • Blanc, F., Peters, F., & Lemaire, E. (2011a). Experimental signature of the pair trajectories of rough spheres in the shear-induced microstructure in noncolloidal suspensions. Physical Review Letters, 107, 208302.

    Article  Google Scholar 

  • Blanc, F., Peters, F., & Lemaire, E. (2011b). Local transient rheological behavior of concentrated suspensions. Journal of Rheology, 55, 835–854.

    Article  Google Scholar 

  • Blanc, F., Lemaire, E., Meunier, A., & Peters, F. (2013). Microstructure in sheared non-Brownian concentrated suspensions. Journal of Rheology, 57, 273–292.

    Article  Google Scholar 

  • Bonnoit, C., Darnige, T., Clement, E., & Lindner, A. (2010). Inclined plane rheometry of a dense granular suspension. Journal of Rheology, 54, 65–79.

    Article  Google Scholar 

  • Boyer, F., Pouliquen, O., & Guazzelli, É. (2011a). Dense suspensions in rotating-rod flows: Normal stresses and particle migration. Journal of Fluid Mechanics, 686, 5–25.

    Article  Google Scholar 

  • Boyer, F., Guazzelli, É., & Pouliquen, O. (2011b). Unifying suspension and granular rheology. Physical Review Letters, 107, 188301.

    Article  Google Scholar 

  • Brady, J. F., & Morris, J. F. (1997). Microstructure of strongly sheared suspensions and its impact on rheology and diffusion. Journal of Fluid Mechanics, 348, 103–139.

    Article  Google Scholar 

  • Callaghan, P. T. (1991). Principles of nuclear magnetic resonance spectroscopy. Oxford: Clarendon Press.

    Google Scholar 

  • Callaghan, P. T. (1999). Rheo-NMR: Nuclear magnetic resonance and the rheology of complex fluids. Reports on Progress in Physics, 62, 599.

    Article  Google Scholar 

  • Chateau, X., Ovarlez, G., & Trung, K. L. (2008). Homogenization approach to the behavior of suspensions of noncolloidal particles in yield stress fluids. Journal of Rheology, 52, 489–506.

    Article  Google Scholar 

  • Cheddadi, I., Saramito, P., & Graner, F. (2012). Steady Couette flows of elastoviscoplastic fluids are nonunique. Journal of Rheology, 56, 213–239.

    Article  Google Scholar 

  • Coussot, P. (1997). Mudflow rheology and dynamics. Rotterdam: Balkema.

    MATH  Google Scholar 

  • Couturier, É., Boyer, F., Pouliquen, O., & Guazzelli, É. (2011). Suspensions in a tilted trough: Second normal stress difference. Journal of Fluid Mechanics, 686, 26–39.

    Article  Google Scholar 

  • Dagois-Bohy, S., Hormozi, S., Guazzelli, É., & Pouliquen, O. (2015). Rheology of dense suspensions of non-colloidal spheres in yield-stress fluids. Journal of Fluid Mechanics, 776, R2.

    Article  MathSciNet  Google Scholar 

  • Dai, S. C., Bertevas, E., Qi, F., & Tanner, R. I. (2013). Viscometric functions for noncolloidal sphere suspensions with Newtonian matrices. Journal of Rheology, 57, 493–510.

    Article  Google Scholar 

  • Dbouk, T., Lobry, L., & Lemaire, E. (2013). Normal stresses in concentrated non-Brownian suspensions. Journal of Fluid Mechanics, 715, 239–272.

    Article  MathSciNet  Google Scholar 

  • Deboeuf, S., Lenoir, N., Hautemayou, D., Bornert, M., Blanc, F., & Ovarlez, G. (2018). Imaging non-Brownian particle suspensions with X-ray tomography: Application to the microstructure of Newtonian and visco-plastic suspensions. Journal of Rheology, 62, 643–663.

    Article  Google Scholar 

  • Denn, M. M., & Morris, J. F. (2014). Rheology of non-Brownian suspensions. Annual Review of Chemical and Biomolecular Engineering, 5, 203–228.

    Article  Google Scholar 

  • Dzuy, N. Q., & Boger, D. V. (1983). Yield stress measurement for concentrated suspensions. Journal of Rheology, 27, 321–349.

    Article  Google Scholar 

  • Erdoǧan, S. T., Martys, N. S., Ferraris, C. F., & Fowler, D. W. (2008). Influence of the shape and roughness of inclusions on the rheological properties of a cementitious suspension. Cement and Concrete Composites, 30, 393–402.

    Article  Google Scholar 

  • Fall, A., Lemaitre, A., Bertrand, F., Bonn, D., & Ovarlez, G. (2010). Shear thickening and migration in granular suspensions. Physical Review Letters, 105, 268303.

    Article  Google Scholar 

  • Fall, A., Bertrand, F., Hautemayou, D., Mézière, C., Moucheront, P., Lemaitre, A., et al. (2015). Macroscopic discontinuous shear thickening versus local shear jamming in cornstarch. Physical Review Letters, 114, 098301.

    Article  Google Scholar 

  • Frankel, N. A., & Acrivos, A. (1967). On the viscosity of a concentrated suspension of solid spheres. Chemical Engineering Science, 22, 847–853.

    Article  Google Scholar 

  • Gallier, S., Lemaire, E., Peters, F., & Lobry, L. (2014). Rheology of sheared suspensions of rough frictional particles. Journal of Fluid Mechanics, 757, 514–549.

    Article  MathSciNet  Google Scholar 

  • Garland, S., Gauthier, G., Martin, J., & Morris, J. F. (2013). Normal stress measurements in sheared non-Brownian suspensions. Journal of Rheology, 57, 71–88.

    Article  Google Scholar 

  • Geiker, M. R., Brandl, M., Thrane, L. N., & Nielsen, L. F. (2002). On the effect of coarse aggregate fraction and shape on the rheological properties of self-compacting concrete. Cement, Concrete and Aggregates, 24, 3–6.

    Article  Google Scholar 

  • Hafid, H., Ovarlez, G., Toussaint, F., Jezequel, P. H., & Roussel, N. (2015). Assessment of potential concrete and mortar rheometry artifacts using magnetic resonance imaging. Cement and Concrete Research, 71, 29–35.

    Article  Google Scholar 

  • Hutton, J. F. (1972). Effect of changes of surface tension and contact angle on normal force measurement with the Weissenberg rheogoniometer. Rheologica Acta, 11, 70–72.

    Article  Google Scholar 

  • Jau, W. C., & Yang, C. T. (2010). Development of a modified concrete rheometer to measure the rheological behavior of conventional and self-consolidating concretes. Cement and Concrete Composites, 32, 450–460.

    Article  Google Scholar 

  • Keentok, M. (1982). The measurement of the yield stress of liquids. Rheologica Acta, 21, 325–332.

    Article  Google Scholar 

  • Koehler, E. P., Fowler, D. W., Ferraris, C. F., & Amziane, S. (2005). A new, portable rheometer for fresh self-consolidating concrete. ACI Special Publications, 233, 97.

    Google Scholar 

  • Leighton, D., & Acrivos, A. (1987a). Measurement of shear-induced self-diffusion in concentrated suspensions of spheres. Journal of Fluid Mechanics, 177, 109–131.

    Article  Google Scholar 

  • Leighton, D., & Acrivos, A. (1987b). The shear-induced migration of particles in concentrated suspensions. Journal of Fluid Mechanics, 181, 415–439.

    Article  Google Scholar 

  • Lhuillier, D. (2009). Migration of rigid particles in non-Brownian viscous suspensions. Physics of Fluids, 21, 023302.

    Article  Google Scholar 

  • Liard, M., Martys, N. S., George, W. L., Lootens, D., & Hebraud, P. (2014). Scaling laws for the flow of generalized Newtonian suspensions. Journal of Rheology, 58, 1993–2015.

    Article  Google Scholar 

  • Maire, E., Buffiere, J. Y., Salvo, L., Blandin, J. J., Ludwig, W., & Letang, J. M. (2001). On the application of X-ray microtomography in the field of materials science. Advanced Engineering Materials, 3, 539–546.

    Article  Google Scholar 

  • Mahaut, F., Chateau, X., Coussot, P., & Ovarlez, G. (2008a). Yield stress and elastic modulus of suspensions of noncolloidal particles in yield stress fluids. Journal of Rheology, 52, 287–313.

    Article  Google Scholar 

  • Mahaut, F., Mokeddem, S., Chateau, X., Roussel, N., & Ovarlez, G. (2008b). Effect of coarse particle volume fraction on the yield stress and thixotropy of cementitious materials. Cement and Concrete Research, 38, 1276–1285.

    Article  Google Scholar 

  • Martínez-Padilla, L. P., & Rivera-Vargas, C. (2006). Flow behavior of Mexican sauces using a vane-in-a-large cup rheometer. Journal of Food Engineering, 72, 189–196.

    Article  Google Scholar 

  • Mewis, J., & Wagner, N. (2012). Colloidal suspension rheology. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Mills, P., & Snabre, P. (1995). Rheology and structure of concentrated suspensions of hard spheres: Shear induced particle migration. Journal de Physique II, 5, 1597–1608.

    Article  Google Scholar 

  • Mohan, L., Cloitre, M., & Bonnecaze, R. T. (2015). Build-up and two-step relaxation of internal stress in jammed suspensions. Journal of Rheology, 59, 63–84.

    Article  Google Scholar 

  • Morris, J. F., & Boulay, F. (1999). Curvilinear flows of noncolloidal suspensions: The role of normal stresses. Journal of Rheology, 43, 1213–1237.

    Article  Google Scholar 

  • Morris, J. F. (2009). A review of microstructure in concentrated suspensions and its implications for rheology and bulk flow. Rheologica Acta, 48, 909–923.

    Article  Google Scholar 

  • Narumi, T., See, H., Honma, Y., Hasegawa, T., Takahashi, T., & Phan-Thien, N. (2002). Transient response of concentrated suspensions after shear reversal. Journal of Rheology, 46, 295–305.

    Article  Google Scholar 

  • Nott, P. R., & Brady, J. F. (1994). Pressure-driven flow of suspensions: Simulation and theory. Journal of Fluid Mechanics, 275, 157–199.

    Article  Google Scholar 

  • Nott, P. R., Guazzelli, E., & Pouliquen, O. (2011). The suspension balance model revisited. Physics of Fluids, 23, 043304.

    Article  Google Scholar 

  • Ovarlez, G., Bertrand, F., & Rodts, S. (2006). Local determination of the constitutive law of a dense suspension of noncolloidal particles through magnetic resonance imaging. Journal of Rheology, 50, 259–292.

    Article  Google Scholar 

  • Ovarlez, G., Rodts, S., Ragouilliaux, A., Coussot, P., Goyon, J., & Colin, A. (2008). Wide-gap Couette flows of dense emulsions: Local concentration measurements, and comparison between macroscopic and local constitutive law measurements through magnetic resonance imaging. Physical Review E, 78, 036307.

    Article  Google Scholar 

  • Ovarlez, G., Mahaut, F., Bertrand, F., & Chateau, X. (2011). Flows and heterogeneities with a vane tool: Magnetic resonance imaging measurements. Journal of Rheology, 55, 197–223.

    Article  Google Scholar 

  • Ovarlez, G., Cohen-Addad, S., Krishan, K., Goyon, J., & Coussot, P. (2013). On the existence of a simple yield stress fluid behavior. Journal of Non-Newtonian Fluid Mechanics, 193, 68–79.

    Article  Google Scholar 

  • Ovarlez, G., Mahaut, F., Deboeuf, S., Lenoir, N., Hormozi, S., & Chateau, X. (2015). Flows of suspensions of particles in yield stress fluids. Journal of Rheology, 59, 1449–1486.

    Article  Google Scholar 

  • Parsi, F., & Gadala-Maria, F. (1987). Fore-and-Aft asymmetry in a concentrated suspension of solid spheres. Journal of Rheology, 31, 725–732.

    Article  Google Scholar 

  • Phillips, R. J., Armstrong, R. C., Brown, R. A., Graham, A. L., & Abbott, J. R. (1992). A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Physics of Fluids A: Fluid Dynamics, 4, 30–40.

    Article  Google Scholar 

  • Saak, A. W., Jennings, H. M., & Shah, S. P. (2001). The influence of wall slip on yield stress and viscoelastic measurements of cement paste. Cement and Concrete Research, 31, 205–212.

    Article  Google Scholar 

  • Seth, J. R., Mohan, L., Locatelli-Champagne, C., Cloitre, M., & Bonnecaze, R. T. (2011). A micromechanical model to predict the flow of soft particle glasses. Nature materials, 10, 838.

    Article  Google Scholar 

  • Shapley, N. C., Brown, R. A., & Armstrong, R. C. (2004). Evaluation of particle migration models based on laser doppler velocimetry measurements in concentrated suspensions. Journal of Rheology, 48, 255–279.

    Article  Google Scholar 

  • Sierou, A., & Brady, J. F. (2002). Rheology and microstructure in concentrated noncolloidal suspensions. Journal of Rheology, 46, 1031–1056.

    Article  Google Scholar 

  • Stickel, J. J., & Powell, R. L. (2005). Fluid mechanics and rheology of dense suspensions. Annual Review of Fluid Mechanics, 37, 129–149.

    Article  MathSciNet  Google Scholar 

  • Suquet, P. (Ed.) (1997). Continuum micromechanics Wien: Springer.

    MATH  Google Scholar 

  • Tetlow, N., Graham, A. L., Ingber, M. S., Subia, S. R., Mondy, L. A., & Altobelli, S. A. (1998). Particle migration in a Couette apparatus: experiment and modeling. Journal of Rheology, 42, 307–327.

    Article  Google Scholar 

  • Thomas, D. G. (1965). Transport characteristics of suspension: VIII A note on the viscosity of Newtonian suspensions of uniform spherical particles. Journal of Colloid Science, 20, 267–277.

    Article  Google Scholar 

  • Torquato, S. (2002). Random heterogeneous materials: Microstructure and macroscopic properties Heidelberg: Springer Science & Business Media.

    Article  Google Scholar 

  • Toutou, Z., & Roussel, N. (2006). Multi scale experimental study of concrete rheology: From water scale to gravel scale. Materials and Structures, 39, 189–199.

    Article  Google Scholar 

  • Vermant, J., Walker, L., Moldenaers, P., & Mewis, J. (1998). Orthogonal versus parallel superposition measurements. Journal of Non-Newtonian Fluid Mechanics, 79, 173–189.

    Article  Google Scholar 

  • Vu, T. S., Ovarlez, G., & Chateau, X. (2010). Macroscopic behavior of bidisperse suspensions of noncolloidal particles in yield stress fluids. Journal of Rheology, 54, 815–833.

    Article  Google Scholar 

  • Yammine, J., Chaouche, M., Guerinet, M., Moranville, M., & Roussel, N. (2008). From ordinary rhelogy concrete to self compacting concrete: A transition between frictional and hydrodynamic interactions. Cement and Concrete Research, 38, 890–896.

    Article  Google Scholar 

  • Zarraga, I. E., Hill, D. A., & Leighton, D. T, Jr. (2000). The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids. Journal of Rheology, 44, 185–220.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Ovarlez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ovarlez, G. (2019). Rheology of Visco-Plastic Suspensions. In: Ovarlez, G., Hormozi, S. (eds) Lectures on Visco-Plastic Fluid Mechanics. CISM International Centre for Mechanical Sciences, vol 583. Springer, Cham. https://doi.org/10.1007/978-3-319-89438-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89438-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89437-9

  • Online ISBN: 978-3-319-89438-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics