Skip to main content

The Sedimentology of Detrital Thermochronology

  • Chapter
  • First Online:
Book cover Fission-Track Thermochronology and its Application to Geology

Abstract

Detrital thermochronology is based on the radiometric dating of apatite, zircon and other minerals in sediments and sedimentary rocks. The objective of detrital thermochronology is to obtain quantitative information on sediment provenance and on the geologic evolution of the area from whence the sediment was generated. This chapter describes how the full potential of the detrital thermochronology approach can be exploited by applying simple sedimentology principles, in order to obtain provenance information that is largely independent from the physical and chemical modifications affecting sediment during transport, deposition and burial diagenesis. Simple strategies can be used to detect the effects of selective entrainment, which form placer and antiplacer deposits, and test the vulnerability of grain-age distributions to hydraulic sorting effects. The mineral fertility of eroded bedrock, which varies over orders of magnitude thus representing the largest source of potential bias in detrital thermochronology, can be readily measured by simple modifications to the standard procedures of mineral concentration. Multi-method studies are potentially biased by grain rounding and abrasion, as the removal of grain rims may lead to an incorrect interpretation of grain ages yielded by low-temperature thermochronometers. Bedload and suspended load have different transport time, and the instantaneous-transport-time assumption of exhumation studies based on the lag-time approach is not necessarily met.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afanas’ ev VP, Nikolenko EI, Tychkov NS et al (2008) Mechanical abrasion of kimberlite indicator minerals: experimental investigations. Russ Geol Geophys 49(2):91–97

    Google Scholar 

  • Allen PA, Allen JR (2013) Basin analysis: principles and application to petroleum play assessment. Wiley, New York

    Google Scholar 

  • Andò S, Garzanti E, Padoan M, Limonta M (2012) Corrosion of heavy minerals during weathering and diagenesis: a catalogue for optical analysis. Sed Geol 280:165–178

    Article  Google Scholar 

  • Anfinson OA, Malusà MG, Ottria G, Dafov LN, Stockli DF (2016) Tracking coarse-grained gravity flows by LASS-ICP-MS depth-profiling of detrital zircon (Aveto Formation, Adriatic Foredeep, Italy). Mar Petrol Geol 77:1163–1176

    Google Scholar 

  • Asti R, Malusà MG, Faccenna C (2018) Supradetachment basin evolution unraveled by detrital apatite fission track analysis: the Gediz Graben (Menderes Massif, Western Turkey). Basin Res 30:502-521

    Google Scholar 

  • Baldwin SL (2015) Highlights and breakthroughs. Zircon dissolution and growth during metamorphism. Am Mineral 100(5–6):1019–1020

    Article  Google Scholar 

  • Bernet M, Zattin M, Garver JI, Brandon MT, Vance JA (2001) Steady-state exhumation of the European Alps. Geology 29:35–38

    Article  Google Scholar 

  • Bonich MB, Samson SD, Fedo CM (2017) Incongruity of detrital zircon ages of granitic bedrock and its derived alluvium: an example from the Stepladder Mountains, Southeastern California. J Geol 125(3)

    Article  Google Scholar 

  • Bramlette MN (1941) The stability of minerals in sandstone. J Sediment Res 11(1)

    Google Scholar 

  • Carrapa B, Di Giulio A, Wijbrans J (2004) The early stages of the Alpine collision: an image derived from the upper Eocene–lower Oligocene record in the Alps-Apennines junction area. Sediment Geol 171:181–203

    Article  Google Scholar 

  • Carroll D (1953) Weatherability of zircon. J Sediment Res 23:106–116

    Google Scholar 

  • Carter A, Moss SJ (1999) Combined detrital-zircon fission-track and U-Pb dating: a new approach to understanding hinterland evolution. Geology 27(3):235–238

    Article  Google Scholar 

  • Cavazza W, Gandolfi G (1992) Diagenetic processes along a basin-wide marker bed as a function of burial depth. J Sediment Res 62(2):261–272

    Google Scholar 

  • Cawood PA, Nemchin AA, Freeman M, Sircombe K (2003) Linking source and sedimentary basin: detrital zircon record of sediment flux along a modern river system and implications for provenance studies. Earth Planet Sci Lett 210:259–268

    Article  Google Scholar 

  • Cheng NS (1997) Simplified settling velocity formula for sediment particle. J Hydraul Eng 123:149–152

    Article  Google Scholar 

  • Cheng NS (2009) Comparison of formulas for drag coefficient and settling velocity of spherical particles. Powder Tech 189:395–398

    Article  Google Scholar 

  • Cleary WJ, Conolly JR (1972) Embayed quartz grains in soils and their significance. J Sed Petr 42:899–904

    Google Scholar 

  • Colin F, Alarcon C, Vieillard P (1993) Zircon: an immobile index in soils? Chem Geol 107:273–276

    Article  Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PW, Kinny P (2003) Atlas of zircon textures. Rev Mineral Geochem 53(1):469–500

    Article  Google Scholar 

  • Dickinson WR (1985) Interpreting provenance relations from detrital modes of sandstones. Provenance of arenites. Springer, Netherlands, pp 333–361

    Chapter  Google Scholar 

  • Dickinson WR (2008) Impact of differential zircon fertility of granitoid basement rocks in North America on age populations of detrital zircons and implications for granite petrogenesis. Earth Planet Sci Lett 275:80–92

    Article  Google Scholar 

  • Dietz V (1973) Experiments on the influence of transport on shape and roundness of heavy minerals. Contrib Sediment 1:69–102

    Google Scholar 

  • Doyle LJ, Carder KL, Steward RG (1983) The hydraulic equivalence of mica. J Sediment Res 53(2)

    Google Scholar 

  • Dupré B, Gaillardet J, Rousseau D, Allègre CJ (1996) Major and trace elements of river-borne material: the Congo Basin. Geochim Cosmochim Ac 60:1301–1321

    Article  Google Scholar 

  • Eplett WJR (1982) The distributions of Smirnov type two-sample rank tests for discontinuous distributions functions. J Royal Stat Soc 44:361–369

    Google Scholar 

  • Ewing RC, Meldrum A, Wang L, Weber WJ, Corrales LR (2003) Radiation effects in zircon. Rev Mineral Geochem 53:387–425

    Article  Google Scholar 

  • Fedele JJ, Paola C (2007) Similarity solutions for fluvial sediment fining by selective deposition. J Geophys Res-Earth 112:F02038

    Google Scholar 

  • Fedo CM, Sircombe KN, Rainbird RH (2003) Detrital zircon analysis of the sedimentary record. Rev Mineral Geochem 53:277–303

    Article  Google Scholar 

  • Folk RL, Ward WC (1957) Brazos River bar: a study in the significance of grain size parameters. J Sediment Res 27:3–26

    Article  Google Scholar 

  • Garver JI, Kamp PJJ (2002) Integration of zircon color and zircon fission-track zonation patterns in orogenic belts: application to the Southern Alps, New Zealand. Tectonophysics 349:203–219

    Article  Google Scholar 

  • Garver JI, Brandon MT, Roden-Tice MK, Kamp PJJ (1999) Exhumation history of orogenic highlands determined by detrital fission track thermochronology. Geol Soc Spec Publ 154:283–304

    Article  Google Scholar 

  • Garzanti E, Andò S (2007) Heavy mineral concentration in modern sands: implications for provenance interpretation. Dev Sediment 58:517–545

    Article  Google Scholar 

  • Garzanti E, Malusà MG (2008) The Oligocene Alps: Domal unroofing and drainage development during early orogenic growth. Earth Planet Sci Lett 268:487–500

    Article  Google Scholar 

  • Garzanti E, Andò S, Vezzoli G (2008) Settling equivalence of detrital minerals and grain-size dependence of sediment composition. Earth Planet Sci Lett 273:138–151

    Article  Google Scholar 

  • Garzanti E, Andò S, Vezzoli G (2009) Grain-size dependence of sediment composition and environmental bias in provenance studies. Earth Planet Sci Lett 277:422–432

    Article  Google Scholar 

  • Garzanti E, Andò S, France-Lanord C, Censi P, Vignola P, Galy V, Lupker M (2010) Mineralogical and chemical variability of fluvial sediments: 1. Bedload sand (Ganga–Brahmaputra, Bangladesh). Earth Planet Sci Lett 299:368–381

    Article  Google Scholar 

  • Garzanti E, Padoan M, Andò S, Resentini A, Vezzoli G, Lustrino M (2013) Weathering and relative durability of detrital minerals in equatorial climate: sand petrology and geochemistry in the East African Rift. J Geol 121:547–580

    Article  Google Scholar 

  • Garzanti E, Resentini A, Andò S, Vezzoli G, Pereira A, Vermeesch P (2015) Physical controls on sand composition and relative durability of detrital minerals during long-distance littoral and eolian transport (coastal Namibia). Sedimentology 62:971–996

    Article  Google Scholar 

  • Gleadow AJW, Lovering JF (1974) The effect of weathering on fission track dating. Earth Planet Sci Lett 22(2):163–168

    Article  Google Scholar 

  • Glotzbach C, van der Beek P, Carcaillet J, Delunel R (2013) Deciphering the driving forces of erosion rates on millennial to million-year timescales in glacially impacted landscapes: an example from the Western Alps. J Geophys Res-Earth 118:1491–1515

    Article  Google Scholar 

  • Glotzbach C, Busschers FS, Winsemann J (2017) Detrital thermochronology of Rhine, Elbe and Meuse river sediment (Central Europe): implications for provenance, erosion and mineral fertility. Int J Earth Sci. https://doi.org/10.1007/s00531-017-1502-9

    Article  Google Scholar 

  • Graham SA, Dickinson WR, Ingersoll RV (1975) Himalayan-Bengal model for flysch dispersal in the Appalachian-Ouachita system. Geol Soc Am Bull 86:273–286

    Article  Google Scholar 

  • Granet M, Chabaux F, Stille P, Dosseto A, France-Lanord C, Blaes E (2010) U-series disequilibria in suspended river sediments and implication for sediment transfer time in alluvial plains: the case of the Himalayan rivers. Geochim Cosmochim Ac 74(10):2851–2865

    Article  Google Scholar 

  • Hay DC, Dempster TJ (2009) Zircon alteration, formation and preservation in sandstones. Sedimentology 56(7):2175–2191

    Article  Google Scholar 

  • He M, Zheng H, Bookhagen B, Clift P (2014) Controls on erosion intensity in the Yangtze River basin tracked by U-Pb detrital zircon dating. Earth-Sci Rev 136:121–140

    Article  Google Scholar 

  • Hietpas J, Samson S, Moecher D, Chakraborty S (2011) Enhancing tectonic and provenance information from detrital zircon studies: assessing terrane-scale sampling and grain-scale characterization. J Geol Soc London 168:309–318

    Article  Google Scholar 

  • Hodges KV, Ruhl KW, Wobus CW, Pringle MS (2005) 40Ar/39Ar thermochronology of detrital minerals. Rev Mineral Geochem 58:239–257

    Article  Google Scholar 

  • Hollander M, Wolfe D (1999) Nonparametric statistical methods. Wiley, New York

    Google Scholar 

  • Horbe AMC, Horbe MA, Suguio K (2004) Tropical spodosols in northeastern Amazonas State, Brazil. Geoderma 119:55–68

    Article  Google Scholar 

  • Hourigan JK, Reiners PW, Brandon MT (2005) U-Th zonation-dependent alpha-ejection in (U-Th)/He chronometry. Geochim Cosmochim Ac 69:3349–3365

    Article  Google Scholar 

  • Hubert JF (1962) A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. J Sediment Res 32:440–450

    Google Scholar 

  • Ingersoll RV, Dickinson WR, Graham SA (2003) Remnant-ocean submarine fans: largest sedimentary systems on Earth. Geol S Am S 370:191–208

    Google Scholar 

  • Johnsson MJ (1993) The system controlling the composition of clastic sediments. Geol S Am S 284:1–20

    Google Scholar 

  • Jourdan S, Bernet M, Tricart P, Hardwick E, Paquette JL, Guillot S, Dumont T, Schwartz S (2013) Short-lived, fast erosional exhumation of the internal western Alps during the late early Oligocene: constraints from geothermochronology of pro-and retro-side foreland basin sediments. Lithosphere 5(2):211–225

    Article  Google Scholar 

  • Kohn MJ, Corrie SL, Markley C (2015) The fall and rise of metamorphic zircon. Am Mineral 100(4):897–908

    Article  Google Scholar 

  • Kohn B, Chung L, Gleadow A (2018) Chapter 2. Fission-track analysis: field collection, sample preparation and data acquisition. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Komar PD (2007) The entrainment, transport and sorting of heavy minerals by waves and currents. Dev Sediment 58:3–48

    Article  Google Scholar 

  • Komar PD, Li Z (1988) Applications of grain-pivoting and sliding analyses to selective entrapment of gravel and to flow-competence evaluations. Sedimentology 35:681–695

    Article  Google Scholar 

  • Komar PD, Wang C (1984) Processes of selective grain transport and the formation of placers on beaches. J Geol 92:637–655

    Article  Google Scholar 

  • Kuenen PH (1959) Experimental abrasion; 3, fluviatile action on sand. Am J Sci 257:172–190

    Article  Google Scholar 

  • Kuenen PH (1960) Experimental abrasion 4: eolian action. J Geol 68:427–449

    Article  Google Scholar 

  • Lång LO (2000) Heavy mineral weathering under acidic soil conditions. Appl Geochem 15(4):415–423

    Article  Google Scholar 

  • Le Roux JP (2005) Grains in motion: a review. Sediment Geol 178:285–313

    Article  Google Scholar 

  • Le Roux G, Laverret E, Shotyk W (2006) Fate of calcite, apatite and feldspars in an ombrotrophic peat bog, Black Forest. Germany. J Geol Soc London 163(4):641–646

    Article  Google Scholar 

  • Malusà MG (2018) Chapter 16. A guide for interpreting complex detrital age patterns in stratigraphic sequences. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Malusà MG, Fitzgerald PG (2018) Chapter 8. From cooling to exhumation: setting the reference frame for the interpretation of thermocronologic data. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Malusà MG, Fitzgerald PG (2018) Chapter 10. Application of thermochronology to geologic problems: bedrock and detrital approaches. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Malusà MG, Zattin M, Andò S, Garzanti E, Vezzoli G (2009) Focused erosion in the Alps constrained by fission-track ages on detrital apatites. Geol Soc Spec Publ 324:141–152

    Article  Google Scholar 

  • Malusà MG, Villa IM, Vezzoli G, Garzanti E (2011) Detrital geochronology of unroofing magmatic complexes and the slow erosion of Oligocene volcanoes in the Alps. Earth Planet Sci Lett 301(1):324–336

    Article  Google Scholar 

  • Malusà MG, Carter A, Limoncelli M, Villa IM, Garzanti E (2013) Bias in detrital zircon geochronology and thermochronometry. Chem Geol 359:90–107

    Article  Google Scholar 

  • Malusà MG, Resentini A, Garzanti E (2016a) Hydraulic sorting and mineral fertility bias in detrital geochronology. Gondwana Res 31:1–19

    Article  Google Scholar 

  • Malusà MG, Anfinson OA, Dafov LN, Stockli DF (2016b) Tracking Adria indentation beneath the Alps by detrital zircon U-Pb geochronology: Implications for the Oligocene-Miocene dynamics of the Adriatic microplate. Geology 44(2):155–158

    Article  Google Scholar 

  • Malusà MG, Wang J, Garzanti E, Liu ZC, Villa IM, Wittmann H (2017) Trace-element and Nd-isotope systematics in detrital apatite of the Po river catchment: Implications for provenance discrimination and the lag-time approach to detrital thermochronology. Lithos 290–291:48–59

    Article  Google Scholar 

  • Mange MA, Wright DT (eds) (2007) Heavy minerals in use. Elsevier, Amsterdam

    Google Scholar 

  • Markwitz V, Kirkland CL, Mehnert A, Gessner K, Shaw J (2017) 3-D characterization of detrital zircon grains and its implications for fluvial transport, mixing, and preservation bias. Geochem Geophys Geosyst 18:4655–4673

    Article  Google Scholar 

  • McBride EF (1985) Diagenetic processes that affect provenance determinations in sandstones. In Zuffa GG (ed) Provenance of arenites. Dordrecht, Reidel, NATO ASI Series 148:95–113

    Google Scholar 

  • McLennan SM, Hemming S, McDaniel DK, Hanson GN (1993) Geochemical approaches to sedimentation, provenance, and tectonics. Geol S Am S 284:21–40

    Google Scholar 

  • Milliken KL (2007) Provenance and diagenesis of heavy minerals, Cenozoic units of the northwestern Gulf of Mexico sedimentary basin. Dev Sediment 58:247–261

    Article  Google Scholar 

  • Moecher DP, Samson SD (2006) Differential zircon fertility of source terranes and natural bias in the detrital zircon record: implications for sedimentary provenance analysis. Earth Planet Sci Lett 247:252–266

    Article  Google Scholar 

  • Morton AC (1979) Surface features of heavy mineral grains from Palaeocene sands of the central North Sea. Scot J Geol 15(4):293–300

    Article  Google Scholar 

  • Morton AC (2012) Value of heavy minerals in sediments and sedimentary rocks for provenance, transport history and stratigraphic correlation. Mineral Ass Canada Short Course Series 42:133–165

    Google Scholar 

  • Morton AC, Hallsworth C (1994) Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sediment Geol 90(3):241–256

    Article  Google Scholar 

  • Morton AC, Hallsworth C (2007) Stability of detrital heavy minerals during burial diagenesis. Dev Sediment 58:215–245

    Article  Google Scholar 

  • Najman YMR, Pringle MS, Johnson MRW, Robertson AHF, Wijbrans JR (1997) Laser 40Ar/39Ar dating of single detrital muscovite grains from early foreland-basin sedimentary deposits in India: implications for early Himalayan evolution. Geology 25:535–538

    Article  Google Scholar 

  • Nasdala L, Wenzel M, Vavra G, Irmer G, Wenzel T, Kober B (2001) Metamictisation of natural zircon accumulation versus thermal annealing of radioactivity-induced damage. Contrib Mineral Petr 141:125–144

    Article  Google Scholar 

  • Nickel E (1973) Experimental dissolution of light and heavy minerals in comparison with weathering and intrastratal solution. Contrib Sediment 1:1–68

    Google Scholar 

  • Pettijohn FJ, Potter PE, Siever R (1972) Sand and sandstone. Springer, New York

    Google Scholar 

  • Pratten NA (1981) The precise measurement of the density of small samples. J Mater Sci 16:1737–1747

    Article  Google Scholar 

  • Reid I, Frostick LE (1985) Role of settling, entrainment and dispersive equivalence and of interstice trapping in placer formation. J Geol Soc London 142:739–746

    Article  Google Scholar 

  • Reiners PW, Farley KA (2001) Influence of crystal size on apatite (U–Th)/He thermochronology: an example from the Bighorn Mountains, Wyoming. Earth Planet Sci Lett 188(3):413–420

    Article  Google Scholar 

  • Resentini A, Malusà MG (2012) Sediment budgets by detrital apatite fission-track dating (Rivers Dora Baltea and Arc, Western Alps). Geol S Am S 487:125–140

    Google Scholar 

  • Resentini A, Malusà MG, Garzanti E (2013) MinSORTING: An Excel® worksheet for modelling mineral grain-size distribution in sediments, with application to detrital geochronology and provenance studies. Comput Geosci 59:90–97

    Article  Google Scholar 

  • Rittenhouse G (1943) Transportation and deposition of heavy minerals. Geol Soc Am Bull 54:1725–1780

    Article  Google Scholar 

  • Rong J, Wang F (2016) Discussion about the origin of mineral textures in granite. In: Metasomatic textures in granites. Springer, Singapore

    Chapter  Google Scholar 

  • Rubey WW (1933) The size distribution of heavy minerals within a water laid sandstone. J Sediment Petr 3:3–29

    Google Scholar 

  • Russell RD, Taylor RE (1937) Roundness and shape of Mississippi River sands. J Geol 45:225–267

    Article  Google Scholar 

  • Saylor JE, Knowles JN, Horton BK, Nie J, Mora A (2013) Mixing of source populations recorded in detrital zircon U-Pb age spectra of modern river sands. J Geol 121:17–33

    Article  Google Scholar 

  • Schuiling RD, DeMeijer RJ, Riezebos HJ, Scholten MJ (1985) Grain size distribution of different minerals in a sediment as a function of their specific density. Geol Mijnbouw 64:199–203

    Google Scholar 

  • Silver LT, Williams IS, Woodhead JA (1981) Uranium in granites from the southwestern United States: actinide parent–daughter systems, sites and mobilization. U.S. Department of Energy Open–File Repository GJBX–45

    Google Scholar 

  • Sircombe KN, Stern RA (2002) An investigation of artificial biasing in detrital zircon U-Pb geochronology due to magnetic separation in sample preparation. Geochim Cosmochim Ac 66:2379–2397

    Article  Google Scholar 

  • Slingerland R, Smith ND (1986) Occurrence and formation of water-laid placers. Annu Rev Earth Pl Sc 14:113–147

    Article  Google Scholar 

  • Smirnov NV (1939) On the estimation of the discrepancy between empirical curves of distribution for two independent samples. Bull Math Univ Moscow 2:3–14

    Google Scholar 

  • Spear FS, Pyle JM (2002) Apatite, monazite, and xenotime in metamorphic rocks. Rev Mineral Geochem 48:293–335

    Article  Google Scholar 

  • Tagami T, Carter A, Hurford AJ (1996) Natural long termannealing of the zircon fission track system in Vienna Basin deep borehole samples: constraints upon the partial annealing zone and closure temperature. Chem Geol 130:147–157

    Article  Google Scholar 

  • Thiel GA (1940) The relative resistance to abrasion of mineral grains of sand size. J Sediment Res 10(3)

    Google Scholar 

  • Thomas M, Thorp M, McAlister J (1999) Equatorial weathering, landform development and the formation of white sands in north western Kalimantan, Indonesia. CATENA 36:205–232

    Article  Google Scholar 

  • Tranel LM, Spotila JA, Kowalewski MJ, Waller CM (2011) Spatial variation of erosion in a small, glaciated basin in the Teton Range, Wyoming, based on detrital apatite (U-Th)/He thermochronology. Basin Res 23:571–590

    Article  Google Scholar 

  • Tripathy-Lang A, Hodges KV, Monteleone BD, Soest MC (2013) Laser (U-Th)/He thermochronology of detrital zircons as a tool for studying surface processes in modern catchments. J Geophys Res-Earth 118(3):1333–1341

    Article  Google Scholar 

  • Van Loon AJ, Mange AM (2007) “In situ” dissolution of heavy minerals through extreme weathering, and the application of the surviving assemblages and their dissolution characteristics to correlation of Dutch and German silver sands. Dev Sediment 58:189–213

    Article  Google Scholar 

  • Velbel MA (1999) Bond strength and the relative weathering rates of simple orthosilicates. Am J Sci 299(7–9):679–696

    Article  Google Scholar 

  • von Eynatten H, Dunkl I (2012) Assessing the sediment factory: the role of single grain analysis. Earth-Sci Rev 115:97–120

    Article  Google Scholar 

  • Walderhaug O, Porten KW (2007) Stability of detrital heavy minerals on the Norwegian continental shelf as a function of depth and temperature. J Sediment Res 77(12):992–1002

    Article  Google Scholar 

  • Wittmann H, Von Blanckenburg F, Maurice L, Guyot JL, Kubik PW (2011) Recycling of Amazon floodplain sediment quantified by cosmogenic 26Al and 10Be. Geology 39(5):467–470

    Article  Google Scholar 

  • Wittmann H, Malusà MG, Resentini A, Garzanti E, Niedermann S (2016) The cosmogenic record of mountain erosion transmitted across a foreland basin: source-to-sink analysis of in situ 10Be, 26Al and 21Ne in sediment of the Po river catchment. Earth Planet Sci Lett 452:258–271

    Article  Google Scholar 

  • Worden RH, Burley SD (2003) Sandstone diagenesis: the evolution of sand to stone. Sandstone Diagenesis Recent Anc 4:3–44

    Google Scholar 

  • Young IT (1977) Proof without prejudice: use of the Kolmogorov-Smirnov test for the analysis of histograms from flow systems and other sources. J Histochem Cytochem 25:935–941

    Article  Google Scholar 

  • Zhang JY, Yin A, Liu WC, Wu FY, Lin D, Grove M (2012) Coupled U-Pb dating and Hf isotopic analysis of detrital zircon of modern river sand from the Yalu River (Yarlung Tsangpo) drainage system in southern Tibet: Constraints on the transport processes and evolution of Himalayan rivers. Geol Soc Am Bull 124:1449–1473

    Article  Google Scholar 

  • Zuffa GG (ed) (1985) Provenance of arenites. Springer, Netherlands

    Google Scholar 

Download references

Acknowledgements

We are grateful to researchers and graduate students in the laboratory of fission-track analysis at University of Milano-Bicocca for their contributions in establishing the approaches described in this work. Reviews by O. Anfinson and M. L. Balestrieri, and comments by P. G. Fitzgerald were of great help to improve the clarity of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco G. Malusà .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malusà, M.G., Garzanti, E. (2019). The Sedimentology of Detrital Thermochronology. In: Malusà, M., Fitzgerald, P. (eds) Fission-Track Thermochronology and its Application to Geology. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-89421-8_7

Download citation

Publish with us

Policies and ethics