Skip to main content

Crustal Exhumation of Plutonic and Metamorphic Rocks: Constraints from Fission-Track Thermochronology

  • Chapter
  • First Online:
Fission-Track Thermochronology and its Application to Geology

Abstract

The thermal evolution of plutonic and metamorphic rocks in the upper crust may be revealed using fission-track (FT) analyses and other low-temperature thermochronologic methods. The segment of pressure–temperature–time–deformation (P-T-t-D) rock paths potentially constrained by FT data corresponds to the lower greenschist facies, prehnite–pumpellyite, and zeolite facies of metamorphic rocks and also includes regions where diagenetic alteration occurs. When plutonic and metamorphic rocks are exhumed, thermal perturbations caused by fluid alteration, and crystallisation below relevant closure/annealing temperatures at relatively shallow crustal depths, may preclude a simplistic interpretation of thermochronologic ages in terms of monotonic cooling. However, FT ages and track-length measurements provide kinetic data that allow interpretation of T-t paths, even in cases where assumptions based on bulk closure temperatures are violated. We show that geologically well-constrained sampling strategies, and application of multiple thermochronologic methods on cogenetic minerals from plutonic and metamorphic rocks, may provide the most promising means to document the timing, rates, and mechanisms of crustal processes. Case studies are presented for: (1) (ultra)high-pressure (U)HP metamorphic terranes (e.g., Papua New Guinea, Western Alps, Western Gneiss Region, Dabie–Sulu), (2) an extensional orogen (Transantarctic Mountains), (3) a compressional orogen (Pyrenees), and (4) a transpressional plate boundary zone (Alpine fault zone, New Zealand).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abers GA, Eilon Z, Gaherty JB, Jin G, Kim YH, Obrebski M, Dieck C (2016) Southeast Papuan crustal tectonics: imaging extension and buoyancy of an active rift. J Geophys Res Solid Earth 121:951–971

    Article  Google Scholar 

  • Adams CJ (1980) Uplift rates and thermal structure in the Alpine fault zone and Alpine schists, Southern Alps, New Zealand. Geol Soc London Spec Publ 9:211–222

    Article  Google Scholar 

  • Adams CJ, Gabites JE (1985) Age of metamorphism and uplift in the Haast schist group at Haast pass, Lake Wanaka and Lake Hawea, South Island, New Zealand. New Z J Geol Geophys 28:85–96

    Article  Google Scholar 

  • Ague JJ, Baxter EF (2007) Brief thermal pulses during mountain building recorded by Sr dif-fusion in apatite and multicomponent diffusion in garnet. Earth Planet Sci Lett 261:500–516

    Article  Google Scholar 

  • Amato JM, Johnson CM, Baumgartner LP, Beard BL (1999) Rapid exhumation of the Zermatt-Saas ophiolite deduced from high-precision Sm, Nd and Rb–Sr geochronology. Earth Planet Sci Lett 171:425–438

    Article  Google Scholar 

  • Baldwin SL (1996) Contrasting P-T-t histories for blueschists from the western Baja terrane and the Aegean: effects of synsubduction exhumation and backarc extension. In: Bebout GE, Scholl DW, Kirby SH, Platt JP (eds) Subduction top to bottom, American Geophysical Union, Washington, DC. https://doi.org/10.1029/GM096p0135

    Chapter  Google Scholar 

  • Baldwin SL, Das JP (2015) Atmospheric Ar and Ne returned from mantle depths to the Earth’s surface by forearc recycling. Proc Nat Acad Sci 112:14174–14179

    Article  Google Scholar 

  • Baldwin SL, Harrison TM (1992) The P-T-t history of serpentinite matrix mélange from west-central Baja California. Geol Soc Am Bull 104:18–31

    Article  Google Scholar 

  • Baldwin SL, Lister GS, Hill EJ, Foster DA, McDougall I (1993) Thermochronologic con-straints on the tectonic evolution of active metamorphic core complexes, D’Entrecasteaux Islands, Papua New Guinea. Tectonics 12:611–628

    Article  Google Scholar 

  • Baldwin SL, Monteleone BD, Webb LE, Fitzgerald PG, Grove M, Hill EJ (2004) Pliocene eclogite exhumation at plate tectonic rates in eastern Papua New Guinea. Nature 431:263–267

    Article  Google Scholar 

  • Baldwin SL, Webb LE, Monteleone BD (2008) Late Miocene coesite-eclogite exhumed in the Woodlark Rift. Geology 36:735–738

    Article  Google Scholar 

  • Baldwin SL, Fitzgerald PG, Webb LE (2012) Tectonics of the New Guinea region. Annu Rev Earth Planet Sci 40:495–520

    Article  Google Scholar 

  • Balestrieri ML, Bigazzi G, Ghezzo C, Lombardo B (1994) Fission track dating of apatites from the Granite Harbour Instrusive suite and uplift-denduation history of the Transantarctic Mountains in the area between the Mariner and David Glaciers (Northern Victoria Land, Antarctica). Terra Antartica 1:82–87

    Google Scholar 

  • Balestrieri ML, Bigazzi G, Ghezzo C (1997) Uplift—denudation of the Transantarctic Mountains between the david and the mariner glaciers, Northern Victoria Land (Antarctica): Constraints by apatite fission-track analysis. In: Ricci CA (ed) The Antarctic region: geological evolution and processes. Terra Antarctica Publication, Siena, pp 547–554

    Google Scholar 

  • Barrett PJ (1965) Geology of the area between the Axel Heiberg and Shackleton Glaciers, Queen Maud Mountains, Antarctica. New Z J Geol Geophys 8:344–370

    Article  Google Scholar 

  • Barrett PJ (1979) Proposed drilling in McMurdo Sound—1979 Memoir of the National Institute of Polar Research. Special Issue 13:231–239

    Google Scholar 

  • Barrett PJ (1991) The Devonian to Triassic Beacon Supergroup of the Transantarctic Mountains and correlatives in other parts of Antarctica. In: Tingey RJ (ed) The geology of Antarctica, vol 17. Oxford Monographs on Geology and Geophysics. Clarendon Press, Oxford, pp 120–152

    Google Scholar 

  • Barrett PJ (1996) Antarctic paleoenvironment through Cenozoic times—a review. Terra Antarct 3:103–119

    Google Scholar 

  • Barrett PJ, Elliot DH (1973) Reconnaissance geologic map of the Buckley Island Quadrangle, Transantarctic Mountains. Antarctica, United States Geological Survey, Reston, Va

    Google Scholar 

  • Batt GE, Kohn BP, Braun J, McDougall I, Ireland TR (1999) New insight into the dynamic development of the Southern Alps, New Zealand, from detailed thermochronological investigation of the Mataketake Range pegmatites. Geol Soc London Spec Publ 154:261–282

    Article  Google Scholar 

  • Batt GE, Braun J, Kohn BP, McDougall I (2000) Thermochronological analysis of the dynamics of the Southern Alps, New Zealand. Geol Soc Am Bull 112:250–266

    Article  Google Scholar 

  • Batt GE, Baldwin SL, Cottam M, Fitzgerald PG, Brandon M (2004) Cenozoic plate boundary evolution in the South Island of New Zealand: New thermochronological constraints. Tectonics 23: TC4001

    Article  Google Scholar 

  • Beavan J, Tregoning P, Bevis M, Kato T, Meertens C (2002) Motion and rigidity of the Pacific Plate and implications for plate boundary deformation. J Geophys Res Solid Earth 107

    Google Scholar 

  • Beavan J, Ellis S, Wallace LM, Denys P (2007) Kinematic constraints from GPS on oblique convergence of the Pacific and Australian plates, central South Island, New Zealand. In: Okaya D, Stern TA, Davey FJ (eds) A Continental Plate Boundary: Tectonics at South Island, New Zealand, vol 175. American Geophysical Union. Washington, DC, pp 75–94

    Chapter  Google Scholar 

  • Beavan J, Denys P, Denham M, Hager B, Herring T, Molnar P (2010) Distribution of present‐day vertical deformation across the Southern Alps, New Zealand, from 10 years of GPS data. Geophys Res Lett 37

    Google Scholar 

  • Becker H (1993) Garnet peridotite and eclogite Sm–Nd mineral ages from the Lepontine dome (Swiss Alps): New evidence for Eocene high-pressure metamorphism in the central Alps. Geology 21:599–602

    Article  Google Scholar 

  • Berástegui X, García JM, Losantos M (1990) Structure and sedimentary evolution of the Organyà basin (Central South Pyrenean Unit, Spain) during the Lower Cretaceous. Bull Soc Géol Fr 8:251–264

    Article  Google Scholar 

  • Beucher R, Beek P, Braun J, Batt GE (2012) Exhumation and relief development in the Pelvoux and Dora‐Maira massifs (western Alps) assessed by spectral analysis and inversion of thermochronological age transects J Geophys Res Earth Surface 117

    Google Scholar 

  • Bialas RW, Buck WR, Studinger M, Fitzgerald PG (2007) Plateau collapse model for the Transantarctic Mountains-West Antarctic Rift system: insights from numerical experiments. Geology 35:687

    Article  Google Scholar 

  • Blythe AE (1998) Active tectonics and ultrahigh-pressure rocks. In Hacker BR, Liou JG (eds) When continents collide: geodynamics and geochemistry of ultrahigh-pressure rocks. Springer Netherlands, pp 141–160

    Chapter  Google Scholar 

  • Blythe AE, Huerta AD, Utevsky E (2011) Evaluating the Mesozoic West Antarctic Plateau col-lapse hypothesis: results from apatite fission-track and (U–Th)/He analyses from Byrd Glacier Outlet. In: AGU Fall Meeting Abstracts, 2011

    Google Scholar 

  • Bohlen SR, Valley JW, Essene EJ (1985) Metamorphism in the Adirondacks. I. petrology, pressure and temperature. J Petrol 26:971–992

    Article  Google Scholar 

  • Braun J (2002) Quantifying the effect of recent relief changes on age-elevation relationships. Earth Planet Sci Lett 200:331–343

    Article  Google Scholar 

  • Brouwer FM, Van De Zedde DMA, Wortel MJR, Vissers RLM (2004) Late-orogenic heating during exhumation: Alpine PTt trajectories and thermomechanical models. Earth Planet Sci Lett 220:185–199

    Article  Google Scholar 

  • Brown RW, Summerfield MA (1997) Some uncertainties in the derivation of rates of denudation from thermochronologic data. Earth Surf Proc Land 22:239–248

    Article  Google Scholar 

  • Bull WB, Cooper AF (1986) Uplifted marine terraces along the Alpine fault, New Zealand. Sci-ence 234:1225–1228

    Article  Google Scholar 

  • Camacho A, Lee JKW, Hensen BJ, Braun J (2005) Short-lived orogenic cycles and the eclogitization of cold crust by spasmodic hot fluids. Nature 435:1191

    Article  Google Scholar 

  • Cape Roberts Science Team (2000) Studies from the Cape Roberts Project, Ross Sea Antarctica. Initial report on CRP-3 vol 7. Terra Antartica, vol 1/2. Terra Antartica Publication, Siena, Italy

    Google Scholar 

  • Capponi G, Messiga B, Piccardo GB, Scambelluri M, Traverso G, Vannucci R (1990) Meta-morphic assemblages in layered amphibolites and micaschists from the Dessent Formation (Mountaineer Range, Antarctica). Mem Soc Geol Ital 43:87–95

    Google Scholar 

  • Carswell DA, Brueckner HK, Cuthbert SJ, Mehta K, O’Brien PJ (2003) The timing of stabilisa-tion and the exhumation rate for ultra-high pressure rocks in the Western Gneiss Region of Norway. J Metam Geol 21:601–612

    Article  Google Scholar 

  • Chamberlain CP, Zeitler PK, Cooper AF (1995) Geochronologic constraints of the uplift and metamorphism along the Alpine Fault, South Island, New Zealand. New Z J Geol Geophys 38:515–523

    Article  Google Scholar 

  • Chamberlain CP, Shelly DR, Townend J, Stern TA (2014) Low-frequency earthquakes reveal punctuated slow slip on the deep extent of the Alpine fault, New Zealand. Geochem Ge-ophys Geosyst 15:2984–2999

    Article  Google Scholar 

  • Chopin C (1984) Coesite and pure pyrope in high-grade blueschists of the Western Alps: a first record and some consequences. Contrib Mineral Petr 86:107–118. https://doi.org/10.1007/BF00381838

    Article  Google Scholar 

  • Chopin C, Henry C, Michard A (1991) Geology and petrology of the coesite-bearing terrain, Dora Maira massif, Western Alps. Eu J Miner 3:263–291

    Article  Google Scholar 

  • Coleman RG, Wang X (1995) Overview of the geology and tectonics of UHPM. Ultrahigh pressure metamorphism, pp 1–32

    Google Scholar 

  • Compagnoni R, Hirajima T, Chopin C (1995) Ultra-high-pressure metamorphic rocks in the Western Alps. Ultrahigh pressure metamorphism, pp 206–243

    Google Scholar 

  • Coney PJ, Muñoz JA, McClay K, Evenchick CA (1996) Syn-tectonic burial and post-tectonic exhumation of an active foreland thrust belt, southern Pyrenees, Spain. J Geol Soc 153:9–16

    Article  Google Scholar 

  • Cooper AF (1972) Progressive metamorphism of metabasic rocks from the Haast Schist Group of southern New Zealand. J Petrol 13:457–492

    Article  Google Scholar 

  • Cooper AF (1974) Multiphase deformation and its relationship to metamorphic crystallisation at Haast River, South Westland, New Zealand. New Z J Geol Geophys 17:855–880

    Article  Google Scholar 

  • Cox SC, Sutherland R (2007) Regional geological framework of South Island, New Zealand, and is significance for understanding the active plate boundary. In: Okaya D, Stern TA, Davey FJ (eds) A Continental Plate Boundary: Tectonics at South Island, New Zealand, vol 175. American Geophysical Union, Washington, DC, pp 19–46. https://doi.org/10.1029/175gm03

    Chapter  Google Scholar 

  • Dachs E, Proyer A (2002) Constraints on the duration of high-pressure metamorphism in the Tauern Window from diffusion modelling of discontinuous growth zones in eclogite garnet. J Metam Geol 20:769–780

    Article  Google Scholar 

  • Dalziel IWD (1992) Antarctica: a tale of two supercontinents. Annu Rev Earth Planet Sci 20:501–526

    Article  Google Scholar 

  • Davies HL, Warren RG (1988) Origin of eclogite-bearing, domed, layered metamorphic com-plexes (“core complexes”) in the D’Entrecasteaux Islands, Papua New Guinea. Tectonics 7:1–21

    Article  Google Scholar 

  • de Sigoyer J, Chavagnac V, Blichert-Toft J, Villa IM, Luais B, Guillot S, Cosca M, Mascle G (2000) Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: Multichronology of the Tso Morari eclogites. Geology 28:487–490

    Article  Google Scholar 

  • DesOrmeau JW, Gordon SM, Kylander-Clark ARC, Hacker BR, Bowring SA, Schoene B, Sam-perton KM (2015) Insights into (U) HP metamorphism of the Western Gneiss Region, Norway: a high-spatial resolution and high-precision zircon study. Chem Geol 414:138–155

    Article  Google Scholar 

  • Dewey JF (2005) Orogeny can be very short. Proc Nat Acad Sci 102:15286–15293

    Article  Google Scholar 

  • Dodson MH (1973) Closure temperatures in cooling geochronological and petrological systems. Contrib Mineral Petr 40:259–274

    Article  Google Scholar 

  • Ducea MN (2016) RESEARCH FOCUS: understanding continental subduction: a work in progress. Geology 44:239–240

    Article  Google Scholar 

  • Duchene S, Lardeaux J-M, Albarède F (1997) Exhumation of eclogites: insights from depth-time path analysis. Tectonophysics 280:125–140

    Article  Google Scholar 

  • Dunlap WJ, Teyssier C, McDougall I, Baldwin S (1995) Thermal and structural evolution of the intracratonic Arltunga Nappe Complex, central Australia. Tectonics 14:1182–1204

    Article  Google Scholar 

  • Elliot DH (1975) Tectonics of Antarctica: a review. Am J Sci 275:45–106

    Google Scholar 

  • Elliot DH (1992) Jurassic magmatism and tectonism associated with Gondwanaland break-up; an Antarctic perspective. Geol Soc London Spec Publ 68:165–184

    Article  Google Scholar 

  • Elliot DH, Fleming TH (2004) Occurrence and dispersal of magmas in the Jurassic Ferrar large igneous province, Antarctica. Gondwana Res 7:223–237

    Article  Google Scholar 

  • Ellis SM, Little TA, Wallace LM, Hacker BR, Buiter SJH (2011) Feedback between rifting and diapirism can exhume ultrahigh-pressure rocks. Earth Planet Sci Lett 311:427–438

    Article  Google Scholar 

  • England PC, Thompson AB (1984) Pressure-temperature-time paths of regional metamor-phism I. Heat transfer during the evolution of regions of thickened continental crust. J Petrol 25:894–928

    Article  Google Scholar 

  • Ernst WG (1988) Tectonic history of subduction zones inferred from retrograde blueschist PT paths. Geology 16:1081–1084

    Article  Google Scholar 

  • Fillon C, van der Beek P (2012) Post-orogenic evolution of the southern Pyrenees: constraints from inverse thermo-kinematic modelling of low-temperature thermochronology data. Basin Res 24:418–436

    Article  Google Scholar 

  • Fitzgerald PG (1992) The Transantarctic Mountains of southern Victoria Land: the application of apatite fission track analysis to a rift shoulder uplift. Tectonics 11:634–662

    Article  Google Scholar 

  • Fitzgerald PG (1994) Thermochronologic constraints on post-Paleozoic tectonic evolution of the central Transantarctic Mountains, Antarctica. Tectonics 13:818–836

    Article  Google Scholar 

  • Fitzgerald PG (2002) Tectonics and landscape evolution of the Antarctic plate since Gondwana breakup, with an emphasis on the West Antarctic rift system and the Transantarctic Mountains. In: Gamble JA, Skinner DNB, Henrys S (eds) Antarctica at the close of a Millennium. In: Proceedings of the 8th international symposium on Antarctic earth science. The Royal Society of New Zealand Bulletin, 35 edn. Royal Society of New Zealand, pp 453–469

    Google Scholar 

  • Fitzgerald PG, Baldwin SL (2007) Thermochronologic constraints on Jurassic rift flank denudation in the Thiel Mountains, Antarctica. In: Cooper AK, Raymond CR et al. (eds) Antarctica: a keystone in a changing world. USGS open-file report 2007

    Google Scholar 

  • Fitzgerald PG, Baldwin SL (1997) Detachment fault model for the evolution of the Ross Embayment: geologic and fission track constraints from DSDP site 270. In: Ricci CA (ed) The Antarctic region: geological evolution and processes. Terra Antarctica Publication, Siena, pp. 555–564

    Google Scholar 

  • Fitzgerald PG, Gleadow AJW (1988) Fission-track geochronology, tectonics and structure of the Transantarctic Mountains in northern Victoria Land, Antarctica. Chem Geol Isotope Geosci Sect 73:169–198

    Article  Google Scholar 

  • Fitzgerald PG, Gleadow AJW (1990) New approaches in fission track geochronology as a tectonic tool: examples from the Transantarctic Mountains. Nucl Tracks 17:351–357

    Article  Google Scholar 

  • Fitzgerald PG, Malusà MG (2018) Chapter 9: concept of the exhumed partial annealing (retention) zone and age-elevation profiles in thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer

    Google Scholar 

  • Fitzgerald PG, Stump E (1997) Cretaceous and Cenozoic episodic denudation of the Transantarctic Mountains, Antarctica: new constraints from apatite fission track thermochronology in the Scott Glacier region. J Geophys Res 102:7747–7765

    Article  Google Scholar 

  • Fitzgerald PG, Muñoz JA, Coney PJ, Baldwin SL (1999) Asymmetric exhumation across the Pyrenean orogen: implications for the tectonic evolution of collisional orogens. Earth Planet Sci Lett 173:157–170

    Article  Google Scholar 

  • Fitzgerald PG, Baldwin SL, O’Sullivan PB, Webb LE (2006) Interpretation of (U–Th)/He single grain ages from slowly cooled crustal terranes: a case study from the Transantarctic Mountains of southern Victoria Land. Chem Geol 225:91–120

    Article  Google Scholar 

  • Fitzgerald PG, Baldwin SL, Bermúdez MB, Webb LE, Little TA, Miller SR, Malusa MG, Seward D (2015) Exhumation of the Papuan New Guinea (U)HP terrane: constraints from low temperature thermochronology.  XI International Eclogite Conference, Dominican Republic. http://www.ruhr-uni-bochum.de/eclogite/iec11/IEC-2015-abstract-volume.pdf

  • Frezzotti ML, Selverstone J, Sharp ZD, Compagnoni R (2011) Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nature Geosci 4:703

    Article  Google Scholar 

  • Gebauer D (1996) A P‐T‐t Path for an (ultra?) High‐Pressure ultramafic/mafic rock association and its felsic country‐rocks based on SHRIMP dating of magmatic and metamorphic zircon domains. example: Alpe Arami (Central Swiss Alps). Earth Proc: Read Isotopic Code 307–329

    Google Scholar 

  • Gebauer D, Schertl HP, Brix M, Schreyer W (1997) 35 Ma old ultrahigh-pressure metamorphism and evidence for very rapid exhumation in the Dora Maira Massif, Western Alps. Lithos 41:5–24

    Article  Google Scholar 

  • Gibson M, Sinclair HD, Lynn GJ, Stuart FM (2007) Late- to post-orogenic exhumation of the central Pyrenees revealed through combined thermochronological data and thermal modeling. Basin Res 19:323–334

    Article  Google Scholar 

  • Gilotti JA (2013) The realm of ultrahigh-pressure metamorphism. Elements 9:255–260

    Article  Google Scholar 

  • Gleadow AJW, Brown RW (2000) Fission track thermochronology and the long term denuda-tional response to tectonics. In: Summerfield MA (ed) Geomorphology and global tectonics. John Willey and Sons, New York, pp 57–75

    Google Scholar 

  • Gleadow AJW, Fitzgerald PG (1987) Uplift history and structure of the Transantarctic Mountains: new evidence from fission track dating of basement apatites in the Dry Valleys area, southern Victoria Land. Earth Planet Sci Lett 82:1–14

    Article  Google Scholar 

  • Gleadow AJW, McKelvey BC, Ferguson KU (1984) Uplift history of the Transantarctic Mountains in the Dry Valleys area, southern Victoria Land, Antarctica, from apatite fission track ages. New Z J Geol Geophys 27:457–464

    Article  Google Scholar 

  • Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals. SEPM Short Course 31, Tulsa, 199 pp

    Google Scholar 

  • Goodge JW (2007) Metamorphism in the Ross orogen and its bearing on Gondwana margin tectonics. Geol S Am S 419:185–203

    Google Scholar 

  • Gordon SM, Little TA, Hacker BR, Bowring SA, Korchinski M, Baldwin SL, Kylander-Clark ARC (2012) Multi-stage exhumation of young UHP–HP rocks: timescales of melt crystallization in the D’Entrecasteaux Islands, southeastern Papua New Guinea. Earth Planet Sci Lett 351–352:237–246

    Article  Google Scholar 

  • Grapes R, Watanabe T (1992) Metamorphism and uplift of Alpine schist in the Franz Josef-Fox Glacier area of the Southern Alps, New Zealand. J Metam Geol 10:171–180

    Article  Google Scholar 

  • Guillot S, Hattori K, Agard P, Schwartz S, Vidal O (2009) Exhumation processes in oceanic and continental subduction contexts: a review. In: Subduction Zone Geodynamics. Springer, pp 175–205

    Chapter  Google Scholar 

  • Gunn BM, Warren G (1962) Geology of Victoria Land between the Mawson and Mulock Glaciers, Antarctica vol 70–71. New Z Geol Survey Bull, Lower Hutt

    Google Scholar 

  • Hacker BR (2006) Pressures and temperatures of ultrahigh-pressure metamorphism: implications for UHP tectonics and H2O in subducting slabs. Int Geol Rev 48:1053–1066

    Article  Google Scholar 

  • Hacker BR, Ratschbacher L, Webb LE, Ireland T, Walker D, Shuwen D (1998) U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China. Earth Planet Sci Lett 161:215–230

    Article  Google Scholar 

  • Hacker BR, Ratschbacher L, Webb LE, McWilliams MO, Ireland T, Calvert A, Dong S, Wenk HR, Chateigner D (2000) Exhumation of ultrahigh-pressure continental crust in east central China: late Triassic-Early Jurassic tectonic unroofing. J Geophys Res Solid Earth 105:13339–13364

    Article  Google Scholar 

  • Harlov DE (2015) Apatite: a fingerprint for metasomatic processes. Elements 11:171–176

    Article  Google Scholar 

  • Harlov DE, Wirth R, Förster H-J (2005) An experimental study of dissolution–reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib Mineral Petr 150:268–286

    Article  Google Scholar 

  • Harrison TM, Zeitler PK (2005) Fundamentals of noble gas thermochronometry. Rev Mineral Geochem 58:123–149

    Article  Google Scholar 

  • Hay D, Dempster T (2009) Zircon behaviour during low-temperature metamorphism. J Petrol 50:571–589

    Article  Google Scholar 

  • Heimann A, Fleming TH, Elliot DH, Foland KA (1994) A short interval of Jurassic continental flood basalt volcanism in Antarctica as demonstrated by 40Ar/39Ar geochronology. Earth Planet Sci Lett 121:19–41

    Article  Google Scholar 

  • Herman F, Cox S, Kamp P (2009) Low-temperature thermochronology and thermokinematic modeling of deformation. Tectonics

    Google Scholar 

  • Hill EJ, Baldwin SL (1993) Exhumation of high-pressure metamorphic rocks during crustal extension in the D’Entrecasteaux region, Papua New Guinea. J Metam Geol 11:261–277

    Article  Google Scholar 

  • Hill EJ, Baldwin SL, Lister GS (1992) Unroofing of active metamorphic core complexes in the D’Entrecasteaux Islands, Papua New Guinea. Geology 20:907–910

    Article  Google Scholar 

  • Hodges KV (1991) Pressure-temperature-time paths. Annu Rev Earth Planet Sci 19:207–236

    Article  Google Scholar 

  • Houlié N, Stern TA (2012) A comparison of GPS solutions for strain and SKS fast directions: Implications for modes of shear in the mantle of a plate boundary zone. Earth Planet Sci Lett 345:117–125

    Article  Google Scholar 

  • Hu S, Kohn BP, Raza A, Wang J, Gleadow AJW (2006) Cretaceous and Cenozoic cooling history across the ultrahigh pressure Tongbai-Dabie belt, central China, from apatite fission-track thermochronology. Tectonophysics 420:409–429

    Article  Google Scholar 

  • Huntington KW, Ehlers TA, Hodges KV, Whipp DM (2007) Topography, exhumation pathway, age uncertainties, and the interpretation of thermochronometer data. Tectonics 26

    Article  Google Scholar 

  • Husson L, Moretti I (2002) Thermal regime of fold and thrust belts—an application to the Bolivian subAndean zone. Tectonophysics 345:253–280

    Article  Google Scholar 

  • Jamieson RA, Beaumont C (2013) On the origin of orogens. Geol Soc Am Bull 125:1671–1702

    Article  Google Scholar 

  • Jiracek GR, Gonzalez VM, Grant Caldwell T, Wannamaker PE, Kilb D (2007) Seismogenic, electrically conductive, and fluid zones at continental plate boundaries in New Zealand, Himalaya, and California, USA. In: O’kaya D, Stern TA, Davey F (eds) A Continental Plate Boundary: Tectonics at South Island, New Zealand, vol 175. American Geophysical Union, Washington DC, pp 347–369

    Chapter  Google Scholar 

  • Jolivet M, Labaume P, Brunel M, Arnaud N, Campani M (2007) Thermochronology constraints for the propagation sequence of the south Pyrenean basement thrust system (France-Spain). Tectonics 26: TC5007

    Article  Google Scholar 

  • Kamp PJJ, Tippett JM (1993) Dynamics of Pacific plate crust in the South Island (New Zealand) zone of oblique continent-continent convergence. J Geophys Res Solid Earth 98:16105–16118

    Article  Google Scholar 

  • Kamp PJJ, Green PF, White SH (1989) Fission track analysis reveals character of collisional tectonics in New Zealand. Tectonics 8:169–195

    Article  Google Scholar 

  • Ketcham R (2018) Chapter 3. Fission track annealing: from geologic observations to thermal history modeling. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer

    Google Scholar 

  • Kohn B, Chung L, Gleadow A (2018) Chapter 2. Fission-track analysis: field collection, sample preparation and data acquisition. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer

    Google Scholar 

  • Kohn MJ (2016) Metamorphic chronology-a tool for all ages. Am Mineral 101:25–42

    Article  Google Scholar 

  • Kohn MJ, Corrie SL, Markley C (2015) The fall and rise of metamorphic zircon. Am Mineral 100:897–908

    Article  Google Scholar 

  • Koons PO (1995) Modeling the topographic evolution of collisional belts. Annu Rev Earth Planet Sci 23:375–408

    Article  Google Scholar 

  • Ksienzyk AK, Dunkl I, Jacobs J, Fossen H, Kohlmann F (2014) From orogen to passive margin: constraints from fission track and (U–Th)/He analyses on Mesozoic uplift and fault reactivation in SW Norway. Geol Soc London Spec Publ 390(SP390):327

    Google Scholar 

  • Kufner S-K, Schurr B, Sippl C, Yuan X, Ratschbacher L, Ischuk A, Murodkulov S, Schneider F, Mechie J, Tilmann F (2016) Deep India meets deep Asia: Lithospheric indentation, delamination and break-off under Pamir and Hindu Kush (Central Asia). Earth Planet Sci Lett 435:171–184

    Article  Google Scholar 

  • Lardeaux J-M, Schwartz S, Tricart P, Paul A, Guillot S, Béthoux N, Masson F (2006) A crustal-scale cross-section of the south-western Alps combining geophysical and geological imagery. Terra Nova 18:412–422

    Article  Google Scholar 

  • Leech ML, Stockli DF (2000) The late exhumation history of the ultrahigh-pressure Maksyutov Complex, south Ural Mountains, from new apatite fission track data. Tectonics 19:153–167

    Article  Google Scholar 

  • LeMasurier WE, Thomson JW (eds) (1990) Volcanoes of the Antarctic Plate and Southern Oceans. Antarctic research series, vol 48. American Geophysical Union, Washington, DC

    Google Scholar 

  • Lennykh VI, Valizer PM, Beane R, Leech M, Ernst WG (1995) Petrotectonic evolution of the Maksyutov Complex, Southern Urals, Russia: implications for ultrahigh-pressure meta-morphism. Int Geol Rev 37:584–600

    Article  Google Scholar 

  • Liao J, Malusà MG, Liang Z, Baldwin SL, Fitzgerald PG, Gerya T (2018) Divergent plate motion drives rapid exhumation of (ultra)high pressure rocks. Earth Planet Sci Lett 491:67–80. https://doi.org/10.1016/j.epsl.2018.03.024

    Article  Google Scholar 

  • Lindsay JF, Gunner J, Barrett PJ (1973) Reconnaissance geologic map of the Mount Elizabeth and Mount Kathleen quadrangles, Transantarctic Mountains, Antarctica. US Geological Survey Washington, DC, 1:250,000

    Google Scholar 

  • Liou JG, Ernst WG, Zhang RY, Tsujimori T, Jahn BM (2009) Ultrahigh-pressure minerals and metamorphic terranes—the view from China. J Asian Earth Sci 35:199–231

    Article  Google Scholar 

  • Lisker F (2002) Review of fission track studies in northern Victoria Land, Antarctica; passive margin evolution versus uplift of the Transantarctic Mountains. Tectonophysics 349:57–73

    Article  Google Scholar 

  • Little TA, Cox SE, Vry JK, Batt G (2005) Variations in exhumation level and uplift rate along the obliqu-slip Alpine fault, central Southern Alps. New Zealand. Geol Soc Am Bull 117:707

    Article  Google Scholar 

  • Little TA, Baldwin SL, Fitzgerald PG, Monteleone BM (2007) Continental rifting and meta-morphic core complex formation ahead of the Woodlark Spreading Ridge, D’Entrecasteaux Islands, Papua New Guinea. Tectonics 26: TC1002. doi:1010.1029/2005TC001911

    Article  Google Scholar 

  • Liu LP, Li Z-X, Danišík M, Li S, Evans N, Jourdan F, Tao N (2017) Thermochronology of the Sulu ultrahigh-pressure metamorphic terrane: implications for continental collision and lithospheric thinning. Tectonophysics 712:10–29

    Article  Google Scholar 

  • Lock J, Willett S (2008) Low-temperature thermochronometric ages in fold-and-thrust belts. Tectonophysics 456:147–162

    Article  Google Scholar 

  • Lovera OM, Richter FM, Harrison TM (1989) The 40Ar/39Ar thermochrometry for slowly cooled samples having a distribution of diffusion domain sizes. J Geophys Res 94:17917–17935

    Article  Google Scholar 

  • Lovera OM, Grove M, Harrison TM, Mahon KI (1997) Systematic analysis of K-feldspar 40Ar 39Ar step heating results: I. Significance of activation energy determinations. Geochim Cosmochim Ac 61:3171–3192

    Article  Google Scholar 

  • Lovera OM, Grove M, Harrison TM (2002) Systematic analysis of K-feldspar 40Ar/39Ar step heating results II: Relevance of laboratory argon diffusion properties to nature. Geochim Cosmochim Ac 66:1237–1255

    Article  Google Scholar 

  • Malusà MG, Fitzgerald PG (2018a) Chapter 8. From cooling to exhumation: setting the reference frame for the interpretation of thermochronologic data. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer

    Google Scholar 

  • Malusà MG, Fitzgerald PG (2018b) Chapter 10. Application of thermochronology to geologic problems: bedrock and detrital approaches. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer

    Google Scholar 

  • Malusà MG, Polino R, Zattin M, Bigazzi G, Martin S, Piana F (2005) Miocene to present differential exhumation in the Western Alps: insights from fission track thermochronology. Tectonics 24:1–23 TC3004

    Article  Google Scholar 

  • Malusà MG, Philippot P, Zattin M, Martin S (2006) Late stages of exhumation constrained by structural, fluid inclusion and fission track analyses (Sesia–Lanzo unit, Western European Alps). Earth Planet Sci Lett 243:565–580

    Article  Google Scholar 

  • Malusà MG, Faccenna C, Garzanti E, Polino R (2011) Divergence in subduction zones and exhumation of high pressure rocks (Eocene Western Alps). Earth Planet Sci Lett 310:21–32

    Article  Google Scholar 

  • Malusà MG, Faccenna C, Baldwin SL, Fitzgerald PG, Rossetti F, Balestrieri ML, Danišík M, El-lero A, Ottria G, Piromallo C (2015) Contrasting styles of (U) HP rock exhumation along the Cenozoic Adria-Europe plate boundary (Western Alps, Calabria, Corsica). Geochem Geophys Geosyst 16:1786–1824

    Article  Google Scholar 

  • McClay K, Muñoz J-A, García-Senz J (2004) Extensional salt tectonics in a contractional orogen: a newly identified tectonic event in the Spanish Pyrenees. Geology 32:737–740

    Article  Google Scholar 

  • McDougall I, Harrison TM (1999) Geochronology and thermochronology by the 40Ar/39Ar method vol 9. Oxford Monographs on Geology and Geophysics, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Metcalf JR, Fitzgerald PG, Baldwin SL, Muñoz JA (2009) Thermochronology in a convergent orogen: constraints on thrust faulting and exhumation from the Maladeta Pluton in the Axial Zone of the Central Pyrenees. Earth Planet Sci Lett 287:488–503

    Article  Google Scholar 

  • Miller SR, Fitzgerald PG, Baldwin SL (2010) Cenozoic range-front faulting and development of the Transantarctic Mountains near Cape Surprise, Antarctica: Thermochronologic and geo-morphologic constraints. Tectonics 29. https://doi.org/10.1029/2009tc002457

  • Monteleone BD, Baldwin SL, Webb LE, Fitzgerald PG, Grove M, Schmitt A (2007) Late Miocene-Pliocene eclogite-facies metamorphism, D’Entrecastreaux Islands, SE Papua New Guinea. J Metam Geol 25:245–265

    Article  Google Scholar 

  • Morris RG, Sinclair HD, Yelland AJ (1998) Exhumation of the Pyrenean orogen: implications for sediment discharge. Basin Res 10:69–85

    Article  Google Scholar 

  • Muñoz JA (1992) Evolution of a continental collision belt: ECORS Pyrenees crustal balanced cross-section. In: McClay K (ed) Thrust Tectonics. Chapman and Hall, London, pp 235–246

    Chapter  Google Scholar 

  • Muñoz JA (2002) The Pyrenees Alpine tectonics; I, The Alpine system north of the Betic Cor-dillera. In: Gibbons W, Moreno T (eds) The geology of Spain. The Geological Society, London, p 649

    Google Scholar 

  • Nagel TJ (2008) Tertiary subduction, collision and exhumation recorded in the Adula nappe, central Alps. Geol Soc London Spec Publ 298:365–392

    Article  Google Scholar 

  • Norris RJ, Cooper AF (2001) Late Quaternary slip rates and slip partitioning on the Alpine Fault, New Zealand. J Struct Geol 23:507–520

    Article  Google Scholar 

  • Olivetti V, Balestrieri ML, Rossetti F, Talarico FM (2013) Tectonic and climatic signals from apatite detrital fission track analysis of the Cape Roberts Project core records, South Victoria Land, Antarctica. Tectonophysics 594:80–90

    Article  Google Scholar 

  • Pedersen VK, Huismans RS, Moucha R (2016) Isostatic and dynamic support of high topography on a North Atlantic passive margin. Earth Planet Sci Lett 446:1–9

    Article  Google Scholar 

  • Petersen KD, Buck WR (2015) Eduction, extension, and exhumation of ultrahigh-pressure rocks in metamorphic core complexes due to subduction initiation. Geochem Geophys Geosyst 16:2564–2581

    Article  Google Scholar 

  • Petford N, Cruden AR, McCaffrey KJW, Vigneresse JL (2000) Granite magma formation, transport and emplacement in the Earth’s crust. Nature 408:669

    Article  Google Scholar 

  • Philpotts A, Ague J (2009) Principles of igneous and metamorphic petrology. Cambridge University Press

    Google Scholar 

  • Powell R, Holland T (2010) Using equilibrium thermodynamics to understand metamorphism and metamorphic rocks. Elements 6:309–314

    Article  Google Scholar 

  • Puigdefàbregas C, Souquet P (1986) Tectonostratigraphic cycles and depositional sequences of the Mesozoic and Tertiary from the Pyrenees. Tectonophysics 129:173–203

    Article  Google Scholar 

  • Purdy JW, Jager E (1976) K–Ar ages on rock forming minerals from Central Alps. Mem Univ Padova 30

    Google Scholar 

  • Rasmussen B (2005) Zircon growth in very low grade metasedimentary rocks: evidence for zirconium mobility at ~250 °C. Contrib Mineral Petr 150:146–155

    Article  Google Scholar 

  • Ratschbacher L, Hacker BR, Webb LE, McWilliams M, Ireland T, Dong S, Calvert A, Chateigner D, Wenk HR (2000) Exhumation of the ultrahigh-pressure continental crust in east central China: Cretaceous and Cenozoic unroofing and the Tan-Lu fault. J Geophys Res Solid Earth 105:13303–13338

    Article  Google Scholar 

  • Reiners PW, Zhou Z, Ehlers TA, Changhai X, Brandon MT, Donelick RA, Nicolescu S (2003) Post-orogenic evolution of the Dabie Shan, eastern China, from (U–Th)/He and fission track thermochronology. Am J Sci 303:489–518

    Article  Google Scholar 

  • Ring U, Uysal IT, Glodny J, Cox SC, Little T, Thomson SN, Stubner K, Bozkaya O (2017) Faultgouge dating in the Southern Alps, New Zealand. Tectonophysics 717:321–338

    Article  Google Scholar 

  • Rohrman M, Beek P, Andriessen P, Cloetingh S (1995) Meso-Cenozoic morphotectonic evolution of southern Norway: Neogene domal uplift inferred from apatite fission track thermo-chronology. Tectonics 14:704–718

    Article  Google Scholar 

  • Rubatto D (2017) Zircon: the metamorphic mineral. Rev Min Geochem 83:261–295

    Google Scholar 

  • Rubatto D, Hermann J (2001) Exhumation as fast as subduction? Geology 29:3–6

    Article  Google Scholar 

  • Rubatto D, Gebauer D, Fanning M (1998) Jurassic formation and Eocene subduction of the Zermatt-Saas-Fee ophiolites: implications for the geodynamic evolution of the Central and Western Alps. Contrib Mineral Petr 132:269–287

    Article  Google Scholar 

  • Ryan WBF, Carbotte SM, Coplan JO, O’Hara S, Melkonian A, Arko R, Weissel RA, Ferrini V, Goodwillie A, Nitsche F, Bonczkowski J, Zemsky R (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosyst 10. https://doi.org/10.1029/2008gc002332

  • Sawyer EW, Cesare B, Brown M (2011) When the continental crust melts. Elements 7:229–234

    Article  Google Scholar 

  • Schertl H-P, Schreyer W, Chopin C (1991) The pyrope-coesite rocks and their country rocks at Parigi, Dora Maira Massif, Western Alps: detailed petrography, mineral chemistry and PT-path. Contrib Mineral Petr 108:1–21

    Article  Google Scholar 

  • Schlup M, Carter A, Cosca M, Steck A (2003) Exhumation history of eastern Ladakh revealed by 40Ar/39Ar and fission-track ages: the Indus River-Tso Morari transect. NW Himalaya J Geol Soc 160:385–399

    Article  Google Scholar 

  • Seguret M (1972) Etude tectonique des nappes et séries décollées de la partie centrale du ver-sant sud des Pyrénées Pub Ustela, Géol Struct, pp 155

    Google Scholar 

  • Selverstone J, Sprear F (1985) Metamorphic P-T Paths from pelitic schists and greenstones from the south-west Tauern Window, Eastern Alps. J Metam Geol 3:439–465

    Article  Google Scholar 

  • Selverstone J, Spear FS, Franz G, Morteani G (1984) High-pressure metamorphism in the SW Tauern Window, Austria: PT paths from hornblende-kyanite-staurolite schists. J Petrol 25:501–531

    Article  Google Scholar 

  • Sheppard DS, Adams CJ, Bird GW (1975) Age of metamorphism and uplift in the Alpine Schist Belt, New Zealand. Geol Soc Am Bull 86:1147–1153

    Article  Google Scholar 

  • Smith DC (1984) Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature 310:641–644

    Article  Google Scholar 

  • Solarino S, Malusà MG, Eva E, Guillot S, Paul A, Schwartz S, Zhao L, Aubert C, Dumont T, Pondrelli S, Salimbeni S, Wang Q, Xu X, Zheng T, Zhu R (2018) Mantle wedge exhumation beneath the Dora-Maira (U)HP dome unravelled by local earthquake tomography (Western Alps). Lithos 296–299:623–636

    Article  Google Scholar 

  • Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. Min Soc Am, Washington, DC

    Google Scholar 

  • Spear FS (2014) The duration of near-peak metamorphism from diffusion modelling of garnet zoning. J Metam Geol 32:903–914

    Article  Google Scholar 

  • Stern T, ten Brink US (1989) Flexural uplift of the Transantarctic Mountains. J Geophys Res 94:10315–10330

    Article  Google Scholar 

  • Stern TA, Okaya D, Kleffmann S, Scherwath M, Henrys S, Davey FJ (2007) Geophysical exploration and dynamics of the Alpine Fault zone. In: Okaya D, Stern TA, Davey FJ (eds) A Continental Plate Boundary: Tectonics at South Island, New Zealand, vol 175. American Geophysical Union, Washington, DC, pp 207–233. https://doi.org/10.1029/175gm11

    Chapter  Google Scholar 

  • Stump E, Fitzgerald PG (1992) Episodic uplift of the Transantarctic Mountains. Geology 20:161

    Article  Google Scholar 

  • Sutherland R, Townend J, Toy V, Upton P, Coussens J, Allen M, Baratin L-M, Barth N, Becroft L, Boese C (2017) Extreme hydrothermal conditions at an active plate-bounding fault. Nature 546:137–140

    Article  Google Scholar 

  • ter Voorde M, de Bruijne CH, Cloetingh SAPL, Andriessen PAM (2004) Thermal consequences of thrust faulting: simultaneous versus successive fault activation and exhumation. Earth Planet Sci Lett 223:395–413

    Article  Google Scholar 

  • Tippett JM, Kamp PJJ (1993) Fission track analysis of the late Cenozoic vertical kinematics of continental Pacific crust, South Island, New Zealand. J Geophys Res Solid Earth 98:16119–16148

    Article  Google Scholar 

  • Toy VG, Prior DJ, Norris RJ (2008) Quartz fabrics in the Alpine Fault mylonites: Influence of pre-existing preferred orientations on fabric development during progressive uplift. J Struct Geol 30:602–621

    Article  Google Scholar 

  • Toy VG, Craw D, Cooper AF, Norris RJ (2010) Thermal regime in the central Alpine Fault zone, New Zealand: constraints from microstructures, biotite chemistry and fluid inclusion data. Tectonophysics 485:178–192

    Article  Google Scholar 

  • Tracy RJ, Robinson P (1980) Evolution of metamorphic belts: information from detailed petrologic studies. The Caledonides in the USA 2:189–196

    Google Scholar 

  • Vannucci G, Piazza M, Pastorino P, Fravega P (1997) Le facies a coralli coloniali e rodoficee calcaree di alcune sezioni basali della Formazione di Molare (Oligocene del Bacino Terziario del Piemonte. Italia nord-occidentale Mem Atti Soc Toscana Sci Nat, Ser A 104:1–27

    Google Scholar 

  • Vergés J, Fernàndez M, Martínez A (2002) The Pyrenean orogen: pre-, syn-, and post-collisional evolution. J Virtual Expl 8:55–84

    Google Scholar 

  • Viete DR, Hermann J, Lister GS, Stenhouse IR (2011) The nature and origin of the Barrovian metamorphism, Scotland: diffusion length scales in garnet and inferred thermal time scales. J Geol Soc 168:115–132

    Article  Google Scholar 

  • Vry JK, Baker J, Maas R, Little T, Grapes R, Dixon M (2004) Zoned (Cretaceous and Cenozoic) garnet and the timing of high grade metamorphism, Southern Alps, New Zealand. J Metam Geol 22:137–157

    Article  Google Scholar 

  • Vry J, Powell R, Golden KM, Petersen K (2010) The role of exhumation in metamorphic dehydration and fluid production. Nature Geosci 3:31

    Article  Google Scholar 

  • Walcott RI (1998) Modes of oblique compression: late Cenozoic tectonics of the South Island of New Zealand. Rev Geophys 36:1–26

    Article  Google Scholar 

  • Wallace LM, Beavan J, McCaffrey R, Berryman K, Denys P (2006) Balancing the plate motion budget in the South Island, New Zealand using GPS, geological and seismological data. Geophys J Int. https://doi.org/10.1111/j.1365-246X.2006.03183.x

  • Walsh EO, Hacker BR (2004) The fate of subducted continental margins: two-stage exhumation of the high-pressure to ultrahigh-pressure Western Gneiss Region, Norway. J Metam Geol 22:671–687

    Article  Google Scholar 

  • Warren-Smith E, Lamb S, Seward D, Smith E, Herman F, Stern T (2016) Thermochronological evidence of a low-angle, mid-crustal detachment plane beneath the central South Island, New Zealand. Geochem Geophys Geosyst 17:4212–4235

    Article  Google Scholar 

  • Webb LE, Baldwin SL, Little TA, Fitzgerald PG (2008) Can microplate rotation drive subduction inversion? Geology 36:823–826

    Article  Google Scholar 

  • Welke B, Licht K, Hennessy A, Hemming S, Pierce Davis E, Kassab C (2016) Applications of detrital geochronology and thermochronology from glacial deposits to the Paleozoic and Mesozoic thermal history of the Ross Embayment, Antarctica. Geochem Geophys Geosyst 17:2762–2780

    Article  Google Scholar 

  • Wellman H (1979) An uplift map for the South Island of New Zealand, and a model for uplift of the Southern Alps. Royal Soc New Z Bull 18:13–20

    Google Scholar 

  • Wightman RH, Little TA (2007) Deformation of the Pacific Plate above the Alpine Fault ramp and its relationship to expulsion of metamorphic fluids: an array of backshears. In: Okaya D, Stern T, Davey F (eds) A Continental Plate Boundary: Tectonics at South Island, New Zealand, vol 175. American Geophysical Union, Washington DC, pp 177–205

    Chapter  Google Scholar 

  • Wildman M, Cogné N, Beucher R (2018) Fission-track thermochronology applied to the evolution of passive continental margins. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer

    Google Scholar 

  • Willett S, Beaumont C, Fullsack P (1993) Mechanical model for the tectonics of doubly vergent compressional orogens. Geology 21:371–374

    Article  Google Scholar 

  • Yamato P, Burov E, Agard P, Le Pourhiet L, Jolivet L (2008) HP-UHP exhumation during slow continental subduction: self-consistent thermodynamically and thermomechanically coupled model with application to the Western Alps. Earth Planet Sci Lett 271:63–74

    Article  Google Scholar 

  • Zattin M, Andreucci B, Thomson SN, Reiners PW, Talarico FM (2012) New constraints on the provenance of the ANDRILL AND 2A succession (western Ross Sea, Antarctica) from apatite triple dating. Geochem Geophys Geosyst 13

    Google Scholar 

  • Zeitler PK, Chamberlain CP, Smith HA (1993) Synchronous anatexis, metamorphism, and rapid denudation at Nanga Parbat (Pakistan Himalaya). Geology 21:347

    Article  Google Scholar 

  • Zhao L, Paul A, Guillot S, Solarino S, Malusà MG, Zheng T, Aubert C, Salimbeni S, Dumont T, Schwartz S (2015) First seismic evidence for continental subduction beneath the Western Alps. Geology 43:815–818

    Article  Google Scholar 

  • Zirakparvar NA, Baldwin SL, Vervoort JD (2011) Lu-Hf garnet geochronology applied to plate boundary zones: insights from the (U)HP terrane exhumed within the Woodlark Rift. Earth Planet Sci Lett 309:56–66

    Article  Google Scholar 

  • Zirakparvar NA, Baldwin SL, Schmitt AK (2014) Zircon growth in (U)HP quartzo-feldspathic host gneisses exhumed in the Woodlark Rift of Papua New Guinea. Geochem Geophys Geosyst 15:1258–1282

    Article  Google Scholar 

  • Zirakparvar NA, Baldwin SL, Vervoort JD (2012) The origin and evolution of the Woodlark Rift of Papua New Guinea. Gondwana Res. https://doi.org/10.1016/j.gr.2012.06.013

  • Zwart HJ (1979) The geology of the Central Pyrenees. Leidse Geol Mededelingen 50:1–74

    Google Scholar 

Download references

Acknowledgements

SLB and PGF acknowledge support from the U.S. National Science Foundation. SLB and PGF thank J. Pettinga and the Erskine Program at the University of Canterbury. SLB thanks the Thonis family endowment. Thorough reviews by A. Blythe, M. Danišík, J. Gonzalez, T. Warfel, M. Jimenez, J.M. Brigham, N. Perez Consuegra, and R. Glas are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne L. Baldwin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baldwin, S.L., Fitzgerald, P.G., Malusà, M.G. (2019). Crustal Exhumation of Plutonic and Metamorphic Rocks: Constraints from Fission-Track Thermochronology. In: Malusà, M., Fitzgerald, P. (eds) Fission-Track Thermochronology and its Application to Geology. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-89421-8_13

Download citation

Publish with us

Policies and ethics