Inflammasomes in Bone Diseases

  • Gabriel MbalavieleEmail author
  • Deborah J. Veis
Part of the Experientia Supplementum book series (EXS, volume 108)


Unresolved inflammation is harmful to any tissues in the organism. Bone in particular is vulnerable to inflammatory assaults because its integrity depends on the activity of osteoclasts, which arise from myeloid precursors. Osteoclasts are responsible for bone resorption in normal and disease conditions. Increased osteolysis is a common feature of inflammatory disorders and a risk factor for bone fractures. Thus, bone is impacted negatively not only by local and systemic inflammatory mediators, but also directly, by alterations affecting myelopoiesis and lineage allocations. Such perturbations are characteristics of dysregulated inflammasomes, which are key regulators of innate immunity. In this review, we discuss the role of inflammasomes in bone diseases caused by sterile or non-sterile inflammation.


Inflammation Inflammasome NLRP3 PARP1 Osteoclast Bone DAMPs PAMPs IL-1 Infection 


Acknowledgments and Conflict of Interest

G.M. is supported by NIH/NIAMS AR064755 and AR068972 grants and is co-founder of Confluence Life Sciences, Inc. D.J.V is supported by NIH/NIAMS AR070030 and the Shriners Hospitals for Children.


  1. Akiyama T, Miyamoto Y, Yoshimura K, Yamada A, Takami M, Suzawa T, Hoshino M, Imamura T, Akiyama C, Yasuhara R et al (2014) Porphyromonas gingivalis-derived lysine gingipain enhances osteoclast differentiation induced by tumor necrosis factor-alpha and interleukin-1beta but suppresses that by interleukin-17A: importance of proteolytic degradation of osteoprotegerin by lysine gingipain. J Biol Chem 289:15621–15630CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aksentijevich I, Nowak M, Mallah M, Chae JJ, Watford WT, Hofmann SR, Stein L, Russo R, Goldsmith D, Dent P et al (2002) De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum 46:3340–3348CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alippe Y, Wang C, Ricci B, Xiao J, Chao Q, Zou W, Novack DV, Abu-Amer Y, Civitelli R, Mbalaviele G (2017) Bone matrix components activate the NLRP3 inflammasome and promote osteoclast differentiation. Sci Rep 7:6630CrossRefPubMedPubMedCentralGoogle Scholar
  4. Anton J, Calvo I, Fernandez-Martin J, Gamir ML, Merino R, Jimenez-Trevino S, Sevilla B, Cabades F, Bou R, Arostegui JI (2015) Efficacy and safety of canakinumab in cryopyrin-associated periodic syndromes: results from a Spanish cohort. Clin Exp Rheumatol 33:S67–S71PubMedGoogle Scholar
  5. Baum R, Sharma S, Carpenter S, Li QZ, Busto P, Fitzgerald KA, Marshak-Rothstein A, Gravallese EM (2015) Cutting edge: AIM2 and endosomal TLRs differentially regulate arthritis and autoantibody production in DNase II-deficient mice. J Immunol 194:873–877CrossRefPubMedGoogle Scholar
  6. Bechtold S, Simon D (2014) Growth abnormalities in children and adolescents with juvenile idiopathic arthritis. Rheumatol Int 34:1483–1488CrossRefPubMedGoogle Scholar
  7. Ben-Zvi I, Livneh A (2011) Chronic inflammation in FMF: markers, risk factors, outcomes and therapy. Nat Rev Rheumatol 7:105–112CrossRefPubMedGoogle Scholar
  8. Ben-Zvi I, Kukuy O, Giat E, Pras E, Feld O, Kivity S, Lecturer S, Perski O, Bornstein G, Grossman C et al (2017) Anakinra for colchicine resistant familial Mediterranean fever – a randomized, double blind, placebo-controlled trial. Arthritis Rheumatol 69:854–862CrossRefPubMedGoogle Scholar
  9. Bonar SL, Brydges SD, Mueller JL, McGeough MD, Pena C, Chen D, Grimston SK, Hickman-Brecks CL, Ravindran S, McAlinden A et al (2012) Constitutively activated NLRP3 inflammasome causes inflammation and abnormal skeletal development in mice. PLoS One 7:e35979CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bostanci N, Emingil G, Saygan B, Turkoglu O, Atilla G, Curtis MA, Belibasakis GN (2009) Expression and regulation of the NALP3 inflammasome complex in periodontal diseases. Clin Exp Immunol 157:415–422CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bostanci N, Meier A, Guggenheim B, Belibasakis GN (2011) Regulation of NLRP3 and AIM2 inflammasome gene expression levels in gingival fibroblasts by oral biofilms. Cell Immunol 270:88–93CrossRefPubMedGoogle Scholar
  12. Brydges SD, Mueller JL, McGeough MD, Pena CA, Misaghi A, Gandhi C, Putnam CD, Boyle DL, Firestein GS, Horner AA et al (2009) Inflammasome-mediated disease animal models reveal roles for innate but not adaptive immunity. Immunity 30:875–887CrossRefPubMedPubMedCentralGoogle Scholar
  13. Canna SW, Nigrovic PA (2016) Editorial: 21st century storm chasers: defining macrophage activation syndrome. Arthritis Rheumatol 68:557–560CrossRefPubMedGoogle Scholar
  14. Canna SW, de Jesus AA, Gouni S, Brooks SR, Marrero B, Liu Y, DiMattia MA, Zaal KJ, Sanchez GA, Kim H et al (2014) An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet 46:1140–1146CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cassel SL, Janczy JR, Bing X, Wilson SP, Olivier AK, Otero JE, Iwakura Y, Shayakhmetov DM, Bassuk AG, Abu-Amer Y et al (2014) Inflammasome-independent IL-1beta mediates autoinflammatory disease in Pstpip2-deficient mice. Proc Natl Acad Sci U S A 111:1072–1077CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chae JJ, Cho YH, Lee GS, Cheng J, Liu PP, Feigenbaum L, Katz SI, Kastner DL (2011) Gain-of-function Pyrin mutations induce NLRP3 protein-independent interleukin-1beta activation and severe autoinflammation in mice. Immunity 34:755–768CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chitu V, Nacu V, Charles JF, Henne WM, McMahon HT, Nandi S, Ketchum H, Harris R, Nakamura MC, Stanley ER (2012) PSTPIP2 deficiency in mice causes osteopenia and increased differentiation of multipotent myeloid precursors into osteoclasts. Blood 120:3126–3135CrossRefPubMedPubMedCentralGoogle Scholar
  18. Coll RC, Robertson AA, Chae JJ, Higgins SC, Munoz-Planillo R, Inserra MC, Vetter I, Dungan LS, Monks BG, Stutz A et al (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21:248–255CrossRefPubMedPubMedCentralGoogle Scholar
  19. Davis BK, Roberts RA, Huang MT, Willingham SB, Conti BJ, Brickey WJ, Barker BR, Kwan M, Taxman DJ, Accavitti-Loper MA et al (2011) Cutting edge: NLRC5-dependent activation of the inflammasome. J Immunol 186:1333–1337CrossRefPubMedGoogle Scholar
  20. de Jesus AA, Canna SW, Liu Y, Goldbach-Mansky R (2015) Molecular mechanisms in genetically defined autoinflammatory diseases: disorders of amplified danger signaling. Annu Rev Immunol 33:823–874CrossRefPubMedPubMedCentralGoogle Scholar
  21. Erener S, Petrilli V, Kassner I, Minotti R, Castillo R, Santoro R, Hassa PO, Tschopp J, Hottiger MO (2012) Inflammasome-activated caspase 7 cleaves PARP1 to enhance the expression of a subset of NF-kappaB target genes. Mol Cell 46:200–211CrossRefPubMedGoogle Scholar
  22. Feldmann J, Prieur AM, Quartier P, Berquin P, Certain S, Cortis E, Teillac-Hamel D, Fischer A, de Saint Basile G (2002) Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet 71:198–203CrossRefPubMedPubMedCentralGoogle Scholar
  23. Greenhill CJ, Jones GW, Nowell MA, Newton Z, Harvey AK, Moideen AN, Collins FL, Bloom AC, Coll RC, Robertson AA et al (2014) Interleukin-10 regulates the inflammasome-driven augmentation of inflammatory arthritis and joint destruction. Arthritis Res Ther 16:419CrossRefPubMedPubMedCentralGoogle Scholar
  24. Guarda G, Zenger M, Yazdi AS, Schroder K, Ferrero I, Menu P, Tardivel A, Mattmann C, Tschopp J (2011) Differential expression of NLRP3 among hematopoietic cells. J Immunol 186:2529–2534CrossRefPubMedGoogle Scholar
  25. Guo H, Callaway JB, Ting JP (2015) Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 21:677–687CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gurung P, Burton A, Kanneganti TD (2016) NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1beta-mediated osteomyelitis. Proc Natl Acad Sci U S A 113:4452–4457CrossRefPubMedPubMedCentralGoogle Scholar
  27. Han X, Lin X, Yu X, Lin J, Kawai T, LaRosa KB, Taubman MA (2013) Porphyromonas gingivalis infection-associated periodontal bone resorption is dependent on receptor activator of NF-kappaB ligand. Infect Immun 81:1502–1509CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hill SC, Namde M, Dwyer A, Poznanski A, Canna S, Goldbach-Mansky R (2007) Arthropathy of neonatal onset multisystem inflammatory disease (NOMID/CINCA). Pediatr Radiol 37:145–152CrossRefPubMedGoogle Scholar
  29. Hoffman HM, Broderick L (2016) The role of the inflammasome in patients with autoinflammatory diseases. J Allergy Clin Immunol 138:3–14CrossRefPubMedGoogle Scholar
  30. Hofmann SR, Schnabel A, Rosen-Wolff A, Morbach H, Girschick HJ, Hedrich CM (2016) Chronic nonbacterial osteomyelitis: pathophysiological concepts and current treatment strategies. J Rheumatol 43:1956–1964CrossRefPubMedGoogle Scholar
  31. Holzinger D, Gieldon L, Mysore V, Nippe N, Taxman DJ, Duncan JA, Broglie PM, Marketon K, Austermann J, Vogl T et al (2012) Staphylococcus aureus Panton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome. J Leukoc Biol 92:1069–1081CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ippagunta SK, Brand DD, Luo J, Boyd KL, Calabrese C, Stienstra R, Van de Veerdonk FL, Netea MG, Joosten LA, Lamkanfi M et al (2010) Inflammasome-independent role of apoptosis-associated speck-like protein containing a CARD (ASC) in T cell priming is critical for collagen-induced arthritis. J Biol Chem 285:12454–12462CrossRefPubMedPubMedCentralGoogle Scholar
  33. Janowski AM, Sutterwala FS (2016) Atypical Inflammasomes. Methods Mol Biol 1417:45–62CrossRefPubMedGoogle Scholar
  34. Kassem A, Henning P, Lundberg P, Souza PP, Lindholm C, Lerner UH (2015) Porphyromonas gingivalis stimulates bone resorption by enhancing RANKL (receptor activator of NF-kappaB Ligand) through activation of toll-like receptor 2 in osteoblasts. J Biol Chem 290:20147–20158CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kim H, Walsh MC, Takegahara N, Middleton SA, Shin HI, Kim J, Choi Y (2017) The purinergic receptor P2X5 regulates inflammasome activity and hyper-multinucleation of murine osteoclasts. Sci Rep 7:196CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kitamura A, Sasaki Y, Abe T, Kano H, Yasutomo K (2014) An inherited mutation in NLRC4 causes autoinflammation in human and mice. J Exp Med 211:2385–2396CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kolly L, Busso N, Palmer G, Talabot-Ayer D, Chobaz V, So A (2010) Expression and function of the NALP3 inflammasome in rheumatoid synovium. Immunology 129:178–185CrossRefPubMedPubMedCentralGoogle Scholar
  38. Krauss JL, Zeng R, Hickman-Brecks CL, Wilson JE, Ting JP, Novack DV (2015) NLRP12 provides a critical checkpoint for osteoclast differentiation. Proc Natl Acad Sci U S A 112:10455–10460CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kronenberg HM (2003) Developmental regulation of the growth plate. Nature 423:332–336CrossRefPubMedGoogle Scholar
  40. Lukens JR, Gross JM, Kanneganti TD (2012) IL-1 family cytokines trigger sterile inflammatory disease. Front Immunol 3:315CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lukens JR, Gross JM, Calabrese C, Iwakura Y, Lamkanfi M, Vogel P, Kanneganti T-D (2014) Critical role for inflammasome-independent IL-1β production in osteomyelitis. Proc Natl Acad Sci U S A 111:1066–1071CrossRefPubMedPubMedCentralGoogle Scholar
  42. Martin SJ (2016) Cell death and inflammation: the case for IL-1 family cytokines as the canonical DAMPs of the immune system. FEBS J 283:2599–2615CrossRefPubMedGoogle Scholar
  43. Maruotti N, Corrado A, Cantatore FP (2014) Osteoporosis and rheumatic diseases. Reumatismo 66:125–135CrossRefPubMedGoogle Scholar
  44. Mbalaviele G, Novack DV, Schett G, Teitelbaum SL (2017) Inflammatory osteolysis: a conspiracy against bone. J Clin Investig 127(6):2030–2039CrossRefPubMedGoogle Scholar
  45. McCall SH, Sahraei M, Young AB, Worley CS, Duncan JA, Ting JP, Marriott I (2008) Osteoblasts express NLRP3, a nucleotide-binding domain and leucine-rich repeat region containing receptor implicated in bacterially induced cell death. J Bone Miner Res 23:30–40CrossRefPubMedGoogle Scholar
  46. Meng G, Zhang F, Fuss I, Kitani A, Strober W (2009) A mutation in the Nlrp3 gene causing inflammasome hyperactivation potentiates Th17 cell-dominant immune responses. Immunity 30:860–874CrossRefPubMedPubMedCentralGoogle Scholar
  47. Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG, Warren SE, Leaf IA, Aderem A (2010) Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci U S A 107:3076–3080CrossRefPubMedPubMedCentralGoogle Scholar
  48. Miller LS, Pietras EM, Uricchio LH, Hirano K, Rao S, Lin H, O’Connell RM, Iwakura Y, Cheung AL, Cheng G et al (2007) Inflammasome-mediated production of IL-1beta is required for neutrophil recruitment against Staphylococcus aureus in vivo. J Immunol 179:6933–6942CrossRefPubMedGoogle Scholar
  49. Munoz-Planillo R, Franchi L, Miller LS, Nunez G (2009) A critical role for hemolysins and bacterial lipoproteins in Staphylococcus aureus-induced activation of the Nlrp3 inflammasome. J Immunol 183:3942–3948CrossRefPubMedPubMedCentralGoogle Scholar
  50. Neven B, Marvillet I, Terrada C, Ferster A, Boddaert N, Couloignier V, Pinto G, Pagnier A, Bodemer C, Bodaghi B et al (2010) Long-term efficacy of the interleukin-1 receptor antagonist anakinra in ten patients with neonatal-onset multisystem inflammatory disease/chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum 62:258–267CrossRefPubMedGoogle Scholar
  51. Novack DV, Mbalaviele G (2016) Osteoclasts-key players in skeletal health and disease. Microbiol Spectr 4Google Scholar
  52. Ozen S, Bilginer Y (2014) A clinical guide to autoinflammatory diseases: familial Mediterranean fever and next-of-kin. Nat Rev Rheumatol 10:135–147CrossRefPubMedGoogle Scholar
  53. Park E, Na HS, Song YR, Shin SY, Kim YM, Chung J (2014) Activation of NLRP3 and AIM2 inflammasomes by Porphyromonas gingivalis infection. Infect Immun 82:112–123CrossRefPubMedPubMedCentralGoogle Scholar
  54. Qu C, Bonar SL, Hickman-Brecks CL, Abu-Amer S, McGeough MD, Pena CA, Broderick L, Yang C, Grimston SK, Kading J et al (2015) NLRP3 mediates osteolysis through inflammation-dependent and -independent mechanisms. FASEB J 29:1269–1279CrossRefPubMedGoogle Scholar
  55. Raisz LG (2005) Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 115:3318–3325CrossRefPubMedPubMedCentralGoogle Scholar
  56. Rigante D, Leone A, Marrocco R, Laino ME, Stabile A (2011) Long-term response after 6-year treatment with anakinra and onset of focal bone erosion in neonatal-onset multisystem inflammatory disease (NOMID/CINCA). Rheumatol Int 31:1661–1664CrossRefPubMedGoogle Scholar
  57. Romberg N, Al Moussawi K, Nelson-Williams C, Stiegler AL, Loring E, Choi M, Overton J, Meffre E, Khokha MK, Huttner AJ et al (2014) Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet 46:1135–1139CrossRefPubMedPubMedCentralGoogle Scholar
  58. Rosengren S, Hoffman HM, Bugbee W, Boyle DL (2005) Expression and regulation of cryopyrin and related proteins in rheumatoid arthritis synovium. Ann Rheum Dis 64:708–714CrossRefPubMedGoogle Scholar
  59. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832CrossRefPubMedGoogle Scholar
  60. Scianaro R, Insalaco A, Bracci Laudiero L, De Vito R, Pezzullo M, Teti A, De Benedetti F, Prencipe G (2014) Deregulation of the IL-1beta axis in chronic recurrent multifocal osteomyelitis. Pediatr Rheumatol Online J 12:30CrossRefPubMedPubMedCentralGoogle Scholar
  61. Shao W, Yeretssian G, Doiron K, Hussain SN, Saleh M (2007) The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J Biol Chem 282:36321–36329CrossRefPubMedGoogle Scholar
  62. Sibley CH, Plass N, Snow J, Wiggs EA, Brewer CC, King KA, Zalewski C, Kim HJ, Bishop R, Hill S et al (2012) Sustained response and prevention of damage progression in patients with neonatal-onset multisystem inflammatory disease treated with anakinra: a cohort study to determine three- and five-year outcomes. Arthritis Rheum 64:2375–2386CrossRefPubMedPubMedCentralGoogle Scholar
  63. Silveira TN, Gomes MT, Oliveira LS, Campos PC, Machado GG, Oliveira SC (2017) NLRP12 negatively regulates proinflammatory cytokine production and host defense against Brucella abortus. Eur J Immunol, vol 47, pp 51–59Google Scholar
  64. Snouwaert JN, Nguyen M, Repenning PW, Dye R, Livingston EW, Kovarova M, Moy SS, Brigman BE, Bateman TA, Ting JP et al (2016) An NLRP3 mutation causes arthropathy and osteoporosis in humanized mice. Cell Rep 17:3077–3088CrossRefPubMedGoogle Scholar
  65. Tarp S, Amarilyo G, Foeldvari I, Christensen R, Woo JM, Cohen N, Pope TD, Furst DE (2016) Efficacy and safety of biological agents for systemic juvenile idiopathic arthritis: a systematic review and meta-analysis of randomized trials. Rheumatology (Oxford) 55:669–679CrossRefGoogle Scholar
  66. Vande Walle L, Van Opdenbosch N, Jacques P, Fossoul A, Verheugen E, Vogel P, Beyaert R, Elewaut D, Kanneganti TD, van Loo G et al (2014) Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature 512:69–73CrossRefPubMedGoogle Scholar
  67. Walsh NC, Gravallese EM (2010) Bone remodeling in rheumatic disease: a question of balance. Immunol Rev 233:301–312CrossRefPubMedGoogle Scholar
  68. Wang L, Fu H, Nanayakkara G, Li Y, Shao Y, Johnson C, Cheng J, Yang WY, Yang F, Lavallee M et al (2016) Novel extracellular and nuclear caspase-1 and inflammasomes propagate inflammation and regulate gene expression: a comprehensive database mining study. J Hematol Oncol 9:122CrossRefPubMedPubMedCentralGoogle Scholar
  69. Wang C, Xu CX, Alippe Y, Qu C, Xiao J, Schipani E, Civitelli R, Abu-Amer Y, Mbalaviele G (2017) Chronic inflammation triggered by the NLRP3 inflammasome in myeloid cells promotes growth plate dysplasia by mesenchymal cells. Sci Rep 7(1):4880CrossRefPubMedPubMedCentralGoogle Scholar
  70. Yamaguchi Y, Kurita-Ochiai T, Kobayashi R, Suzuki T, Ando T (2016) Regulation of the NLRP3 inflammasome in Porphyromonas gingivalis-accelerated periodontal disease. Inflamm Res 66:1–7Google Scholar
  71. Yoshida K, Okamura H, Hiroshima Y, Abe K, Kido JI, Shinohara Y, Ozaki K (2017) PKR induces the expression of NLRP3 by regulating the NF-kappaB pathway in Porphyromonas gingivalis-infected osteoblasts. Exp Cell Res 354:57–64CrossRefPubMedGoogle Scholar
  72. Yoshii T, Magara S, Miyai D, Nishimura H, Kuroki E, Furudoi S, Komori T, Ohbayashi C (2002) Local levels of interleukin-1beta, -4, -6 and tumor necrosis factor alpha in an experimental model of murine osteomyelitis due to staphylococcus aureus. Cytokine 19:59–65CrossRefPubMedGoogle Scholar
  73. Youm YH, Grant RW, McCabe LR, Albarado DC, Nguyen KY, Ravussin A, Pistell P, Newman S, Carter R, Laque A et al (2013) Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab 18:519–532CrossRefPubMedPubMedCentralGoogle Scholar
  74. Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, D’Agostino D, Planavsky N, Lupfer C, Kanneganti TD et al (2015) The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med 21:263–269CrossRefPubMedPubMedCentralGoogle Scholar
  75. Zaki FM, Sridharan R, Pei TS, Ibrahim S, Ping TS (2012) NOMID: the radiographic and MRI features and review of literature. J Radiol Case Rep 6:1–8PubMedPubMedCentralGoogle Scholar
  76. Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477:596–600CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Bone and Mineral Diseases, Department of MedicineWashington University School of MedicineSt. LouisUSA
  2. 2.Division of Anatomic and Molecular Pathology, Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations