Shorter Double-Authentication Preventing Signatures for Small Address Spaces

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10831)

Abstract

A recent paper by Derler, Ramacher, and Slamanig (IEEE EuroS&P 2018) constructs double-authentication preventing signatures (“DAP signatures”, a specific self-enforcement enabled variant of signatures where messages consist of an address and a payload) that have—if the supported address space is not too large—keys and signatures that are considerably more compact than those of prior work. We embark on their approach to restrict attention to small address spaces and construct novel DAP schemes that beat their signature size by a factor of five and reduce the signing key size from linear to constant (the verification key size remains almost the same). We construct our DAP signatures generically from identification protocols, using a transform similar to but crucially different from that of Fiat and Shamir. We use random oracles. We don’t use pairings.

Keywords

Signature schemes Self-enforcement Identification protocols Provable security 

References

  1. 1.
    Barker, E.B.: FIPS PUB 186–4 – FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION Digital Signature Standard (DSS) (2009). https://dx.doi.org/10.6028/NIST.FIPS.186-4
  2. 2.
    Bellare, M., Poettering, B., Stebila, D.: From identification to signatures, tightly: a framework and generic transforms. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 435–464. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_15CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Poettering, B., Stebila, D.: Deterring certificate subversion: efficient double-authentication-preventing signatures. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 121–151. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54388-7_5CrossRefGoogle Scholar
  4. 4.
    Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-security signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 124–142. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23951-9_9CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Kim, S., Nikolaenko, V.: Lattice-based DAPS and generalizations: self-enforcement in signature schemes. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 457–477. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61204-1_23CrossRefGoogle Scholar
  6. 6.
    Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, New York (1990).  https://doi.org/10.1007/0-387-34799-2_25Google Scholar
  7. 7.
    Derler, D., Ramacher, S., Slamanig, D.: Short double- and \(N\)-times-authentication-preventing signatures from ECDSA and more. Cryptology ePrint Archive, Report 2017/1203 (2017). To appear in the proceedings of EuroS&P 2018. https://eprint.iacr.org/2017/1203
  8. 8.
    Fersch, M., Kiltz, E., Poettering, B.: On the provable security of (EC)DSA signatures. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, Vienna, Austria, 24–28 October 2016, pp. 1651–1662. ACM Press (2016)Google Scholar
  9. 9.
    Fersch, M., Kiltz, E., Poettering, B.: On the one-per-message unforgeability of (EC)DSA and its variants. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 519–534. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70503-3_17CrossRefGoogle Scholar
  10. 10.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987).  https://doi.org/10.1007/3-540-47721-7_12Google Scholar
  11. 11.
    Goldreich, O.: Foundations of Cryptography: Basic Tools, vol. 1. Cambridge University Press, Cambridge (2001)CrossRefMATHGoogle Scholar
  12. 12.
    Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and Hall/CRC Press, Boca Raton (2007)MATHGoogle Scholar
  13. 13.
    Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000, San Diego, CA, USA, 2–4 February 2000. The Internet Society (2000)Google Scholar
  14. 14.
    Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (2001). http://www.cacr.math.uwaterloo.ca/hac/MATHGoogle Scholar
  15. 15.
    Okamoto, T.: Provably secure and practical identification schemes and corresponding signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993).  https://doi.org/10.1007/3-540-48071-4_3Google Scholar
  16. 16.
    Poettering, B.: Shorter double-authentication preventing signatures for small address spaces. Cryptology ePrint Archive, Report 2018/223 (2018). https://eprint.iacr.org/2018/223
  17. 17.
    Poettering, B., Stebila, D.: Double-authentication-preventing signatures. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 436–453. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11203-9_25Google Scholar
  18. 18.
    Poettering, B., Stebila, D.: Double-authentication-preventing signatures. Int. J. Inf. Sec. 16(1), 1–22 (2017)CrossRefMATHGoogle Scholar
  19. 19.
    Ruffing, T., Kate, A., Schröder, D.: Liar, liar, coins on fire!: Penalizing equivocation by loss of bitcoins. In: Ray, I., Li, N., Kruegel: C. (eds.) ACM CCS 2015, Denver, CO, USA, 12–16 October 2015, pp. 219–230. ACM Press (2015)Google Scholar
  20. 20.
    Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).  https://doi.org/10.1007/0-387-34805-0_22CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Information Security GroupRoyal Holloway, University of LondonEghamUK

Personalised recommendations