Advertisement

Locomotion Mode Classification Based on Support Vector Machines and Hip Joint Angles: A Feasibility Study for Applications in Wearable Robotics

  • Vito PapapiccoEmail author
  • Andrea Parri
  • Elena Martini
  • Vitoantonio Bevilacqua
  • Simona Crea
  • Nicola Vitiello
Conference paper
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 7)

Abstract

Intention decoding of locomotion-related activities covers an essential role in the control architecture of active orthotic devices for gait assistance. This work presents a subject-independent classification method, based on support vector machines, for the identification of locomotion-related activities, i.e. overground walking, ascending and descending stairs. The algorithm uses features extracted only from hip angles measured by joint encoders integrated on a lower-limb active orthosis for gait assistance. Different sets of features are tested in order to identify the configuration with better performance. The highest success rate (i.e. 99% of correct classification) is achieved using the maximum number of features, namely seven features. In future works the algorithm based on the identified set of features will be implemented on the real-time controller of the active pelvis orthosis and tested in activities of daily life.

Notes

Acknowledgements

This work was supported in part by the EU within the CYBERLEGs Plus Plus project (H2020-ICT-2016-1 Grant Agreement #731931) and in part by INAIL within the MOTU project (PPR-AI 1-2).

Andrea Parri, Simona Crea and Nicola Vitiello have commercial interests in IUVO s.r.l., a spin off company of Scuola Superiore SantAnna. Currently, the IP protecting the APO technology has been licensed to IUVO s.r.l. for commercial exploitation.

References

  1. 1.
    Verghese, J., Levalley, A., Hall, C.B., Katz, M.J., Ambrose, A.F., Lipton, R.B.: Epidemiology of gait disorders in community-residing older adults. J. Am. Geriatr. Soc. 54, 255–261 (2006)CrossRefGoogle Scholar
  2. 2.
    World Health Organization: Global Health and Aging (2006). http://www.who.int/ageing/publications/globalhealth.pdf
  3. 3.
    Pons, J.L.: Wearable Robots: Biomechatronic Exoskeletons. Wiley, Hoboken (2008)CrossRefGoogle Scholar
  4. 4.
    Kobetic, R., To, C., Schnellenberger, J., Audu, M., Bulea, T., Gaudio, R., Pinault, G., Tashman, S., Triolo, R.J.: Development of hybrid orthosis for standing, walking, and stair climbing after spinal cord injury. J. Rehabil. Res. Dev. 46(3), 447–462 (2009)CrossRefGoogle Scholar
  5. 5.
    Tucker, M.R., Olivier, J., Pagel, A., Bleuer, H., Bouri, M., Lambercy, O., Milln, J.R., Riener, R., Vallery, H., Gassert, R.: Control strategies for active lower extremity prosthetics and orthotics: a review. J. Neuroeng. Rehabil. 12(1) (2015)CrossRefGoogle Scholar
  6. 6.
    Novak, D., Riener, R.: A survey of sensor fusion methods in wearable robotics. Robot. Auton. Syst. 73, 155–170 (2015)CrossRefGoogle Scholar
  7. 7.
    Huang, H., Zhang, F., Hargrove, L.J., Dou, Z., Rogers, D.R., Englehart, K.B.: Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion. IEEE Trans. Biomed Eng. 58(10), 2867–2875 (2011)CrossRefGoogle Scholar
  8. 8.
    Gorsic, M., Kamnik, R., Ambrozic, L., Vitiello, N., Lefeber, D., Pasquinia, G., Munih, M.: Online phase detection using wearable sensors for walking with a robotic prosthesis. Sensors 14(2), 2776–2794 (2014)CrossRefGoogle Scholar
  9. 9.
    Ambrozic, L., Gorsic, M., Geeroms, J., Flynn, L., Molino, Lova R., Kamnkik, R., Munih, M., Vitiello, N.: CYBERLEGs: a user-oriented robotic transfemoral prosthesis with whole-body awareness control. IEEE Robot. Autom. Mag. 21(4), 82–93 (2014)CrossRefGoogle Scholar
  10. 10.
    Yuan, K., Wang, Q., Wang, L.: Fuzzy-logic-based terrain identification with multisensor fusion for transtibial amputees. IEEE Trans. Mechatron. 20(2), 618–630 (2015)CrossRefGoogle Scholar
  11. 11.
    Chen, B., Wang, X., Huang, Y., Wei, K., Wang, Q.: A foot-wearable interface for locomotion mode recognition based on discrete contact force distribution. Mechatronics 32, 12–21 (2015)CrossRefGoogle Scholar
  12. 12.
    Sup, F., Varol, H.A., Goldfarb, M.: Upslope walking with a powered knee and ankle prosthesis: initial results with an amputee subject. IEEE Trans. Neural Syst. Rehabil. 19(1), 71–78 (2011)CrossRefGoogle Scholar
  13. 13.
    Tkach, D.C., Hargrove, L.J.: Neuromechanical sensor fusion yields highest accuracies in predicting ambulation mode transitions for transtibial amputees. In: Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3074–3077 (2013)Google Scholar
  14. 14.
    Young, A.J., Simon, A., Hargrove, L.J.: An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes. In: Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1587–1590 (2013)Google Scholar
  15. 15.
    Giovacchini, F., Vannetti, F., Fantozzi, M., Cempini, M., Cortese, M., Parri, A., Yan, T., Lefeber, D., Vitiello, N.: A light-weight active orthosis for hip movement assistance. Robot. Auton. Syst. 73, 123–134 (2015)CrossRefGoogle Scholar
  16. 16.
    Pratt, G.A., Williamson, M.M.: Series elastic actuators. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 399–406 (1995)Google Scholar
  17. 17.
    Cortes, C., Vapnik, V.: Support-vector network. Mach. Learn. 20(3), 273–297 (1995)zbMATHGoogle Scholar
  18. 18.
    Bevilacqua, V., Pannarale, P., Abbrescia, M., Cava, C., Paradiso, A., Tommasi, S.: Comparison of data-merging methods with SVM attribute selection and classification in breast cancer gene expression. BMC Bioinform. 13(7) (2012)CrossRefGoogle Scholar
  19. 19.
    Chen, P., Liu, S.: An improved DAG-SVM for multi-class classification. In: Proceedings of the 5th International Conference on Natural computation, pp. 460–462 (2009)Google Scholar
  20. 20.
    Geisser, S.: Predictive Inference. Chapman & Hall, London (1993)CrossRefGoogle Scholar
  21. 21.
    Parri, A., Yuan, K., Marconi, D., Yan, T., Munih, M., Molino Lova, R., Vitiello, N., Wang, Q.: Real-time hybrid ecological intention decoding for lower-limb wearable robots. IEEE Trans. Mechatron. (Accepted for publication)Google Scholar
  22. 22.
    Jang, J., Kim, K., Lee, J., Lim, B., Shim, Y.: Online gait task recognition algorithm for hip exoskeleton. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5327–5332 (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Vito Papapicco
    • 1
    Email author
  • Andrea Parri
    • 1
  • Elena Martini
    • 1
  • Vitoantonio Bevilacqua
    • 3
  • Simona Crea
    • 1
  • Nicola Vitiello
    • 1
    • 2
  1. 1.The BioRobotics InstituteScuola Superiore SantAnnaPontederaItaly
  2. 2.Don Carlo Gnocchi FoundationMilanItaly
  3. 3.Department of Electrical and Information Engineering (DEI)Polytechnic University of BariBariItaly

Personalised recommendations