Factors Affecting Fatigue Resistance of Materials and Structures

  • Sergei V. Petinov
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 251)

Abstract

According the present methodology of fatigue of structures evaluation, material properties are studied in testing specimens at cyclic loading, and actual conditions in structural details at service loading are considered through analysis and description of influencing factors. The chapter describes the effects of the principal factors on fatigue life of structural components. Of these are: stress concentration, including the principles of evaluation the stress concentration factors, hot-spot stress and notch stress when the welded joints are assessed. The influence of constant load component, coupled fatigue corrosion on reliability of structures, and fatigue in random loading conditions are described in necessary details.

References

  1. 1.
    Frost NE, Marsh KJ, Pook LP (1974) Metal fatigue. Clarendon Press, OxfordGoogle Scholar
  2. 2.
    Peterson RE (1989) Stress concentration factors. A handbook. John Wiley & Sons, New YorkGoogle Scholar
  3. 3.
    Kozlyakov VV, Margolin GZ, Petinov SV (1969) Experimental investigation of fatigue damage under non-stationary loading in low-cycle range. Papers of the Leningrad Shpb Inst, 66, p 103–109Google Scholar
  4. 4.
    Miller KJ (1993) Materials science perspective of metal fatigue resistance. Mater Sci Technol 9:453–462Google Scholar
  5. 5.
    Neuber H (1937) Kerbspannungslehre. Springer, BerlinGoogle Scholar
  6. 6.
    Harris WJ (1961) Metallic fatigue. Pergamon Press, New YorkGoogle Scholar
  7. 7.
    Roz M, Eichinger A (1950) Die Bruchgefahr fester Korper bei wiederholter Beanspruchung-Ermudung. Eigenass. Materialprufungs und Versuchsanstalt fur Industrie, Bauwesen und Gewerbe. (EPMA), 83, ZürichGoogle Scholar
  8. 8.
    Det Norske Veritas (2014) Fatigue assessment of offshore steel structures. Recommended practice (RP-C203). Hovik, Norway, p 76Google Scholar
  9. 9.
    Melnikov BE, Petinov SV (2015) Mean stress evolution in irregular cyclic loading of aluminium alloy/the XLIII International Summer School—Conference “Advanced Problems in Mechanics—2015”, SPb, IPME RAS-SPbPU, Abstracts, p 81Google Scholar
  10. 10.
    EUROCODE 3 (2005) Design of steel structures. Part 1–9: fatigue. BS EN 1993-1-9, p. 36Google Scholar
  11. 11.
    Christian G A (2010) Bridge failures—lessons learned. Bridge Engineering course, University of Buffalo, March 29. A presentationGoogle Scholar
  12. 12.
    Burnside OH et al. (1984) Long-term corrosion fatigue of welded marine steels. SSC-326, Ship Structure Committee. U.S. Coast Guard Office of Merchant Marine Safety, Washington DCGoogle Scholar
  13. 13.
    Petinov SV et al (1974) Malozyklovaya ustalost v usloviyakh uskorennoi korrozii (Low-cycle accelerated corrosion fatigue). Papers of the Central Maritime Research Institute, 192, Transport Pubs, LeningradGoogle Scholar
  14. 14.
    Pfluger AR, Lewis RE (eds) (1966) Weld imperfections. Proceedings of symposium at Lockheed Palo Alto research laboratory. Palo Alto, California, Addison-Wesley Publishing CompanyGoogle Scholar
  15. 15.
    Testin RA et al (1987) Predicting the fatigue resistance of steel weldments. Weld Res Suppl Weld J, April, 93–98SGoogle Scholar
  16. 16.
    Hobbacher A (2007) Recommendations for fatigue design of welded joints and components. International Institute of Welding, IIW Doc. XIII-2151r1-07/XV-1254r1-07. Cambridge, AbingtonGoogle Scholar
  17. 17.
    Haibach E (1968) Die Schwingfestigkeit von Sweissverbindungen aus der Sicht einer oertlichen Beanspruchungsmessung. Laboratorium fur Bertriebfestigkeit (LBF). Report FB-77. DarmstadtGoogle Scholar
  18. 18.
    Marshall PW (1974) Basic considerations for tubular joint design in offshore construction. WRC Bulletin 193, New YorkGoogle Scholar
  19. 19.
    Fricke W (2008) Guideline for the fatigue assessment bynotch stress analysis for welded structures. IIW Doc XIII-2240rl-08/XV-1289rl-08, p 35Google Scholar
  20. 20.
    Palmgren A (1924) Gie Lebensdauer von Kugellagern. Zeitschrift des Vereines Deutsches Ingenieure. Dusseldorf 68(14)Google Scholar
  21. 21.
    Miner MA (1945) Cumulative damage in fatigue. Trans. ASME, J Appl Mech 67:A159–A164Google Scholar
  22. 22.
    Gassner E (1939) Festigkeitsversuche mit wiederholter Beanspruchung im Flugzeugbau. Deutsche Luftwatch. Ausg Luftwissen 6(2):61–64Google Scholar
  23. 23.
    Matsuishi M, Endo T (1068) Fatigue of metals subjected to vaying stress. J JSME, 87–99, MarchGoogle Scholar
  24. 24.
    Bolotin VV (1969) Statistical methods in structural mechanics. Holden-Day, San-Francisco, CAGoogle Scholar
  25. 25.
    Stowell EZ (1950) Stress and strain concentrations at a circular hole in infinite plate. NACA Techn Note 1073Google Scholar
  26. 26.
    Neuber H (1961) Theory of stress concentration for shear strained prizmatic bodies with arbitrary non-linear stress-strain law. Trans ASME. J Appl Mech 28Google Scholar
  27. 27.
    Wetzel RM (1968) Smooth specimen simulation of fatigue behavior of notches. J. Mater JMSLA 3(3):646–657Google Scholar
  28. 28.
    Petinov SV (2003) Fatigue analysis of ship structures. Backbone Publishing Company. Fair Lawn, NJ 07410, USA. ISBN 0-9644311-8-1Google Scholar
  29. 29.
    Smith KN, Watson P, Topper TH (1970) A stress-strain function for the fatigue of materials. Int J Fatigue 4(5):767–778Google Scholar
  30. 30.
    Morrow J (1968) Fatigue properties of metals. Section 3.2 of fatigue design handbook. Society of Automotive EngineersGoogle Scholar
  31. 31.
    Wirsching P, Light MC (1980) Fatigue under wide band random stresses. J Struct Div ASCE 106(ST7)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sergei V. Petinov
    • 1
    • 2
  1. 1.Department of Hydraulics and StrengthInstitute of Civil Engineering, Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.Institute for Problems in Mechanical Engineering, Russian Academy of Sciences (IPME RAS)St. PetersburgRussia

Personalised recommendations