Skip to main content

Genetics and Epigenetics of Varicocele Pathophysiology

  • Chapter
  • First Online:

Abstract

Varicocele is the main identifiable cause of male infertility. Despite the impairment of spermatogenesis and its associated infertility, not all men with varicocele are infertile or have alterations in semen parameters. Furthermore, varicocele can be corrected surgically, which may improve semen parameters. Given all of their adverse effects on male reproduction, the current description of varicocele pathophysiology cannot explain the variety of associated clinical manifestations and why varicocelectomy is effective in some cases only. Therefore, varicocele pathophysiology appears to be multifactorial and complex, and it is influenced by genetic alterations and is associated with a strong environmental component. Moreover, testicular environmental alterations caused by varicocele, such as increased temperature and oxidative stress, may lead to changes in gene expression due to epimutations that have implications in sperm production and fertility. Studies have demonstrated chromosomal disorders, gene mutations, polymorphisms, and alterations in gene expression that significantly influence the etiology of the condition. Here, we review the main genetic and epigenetic changes related to varicocele, highlighting the key findings from recent studies to provide a better understanding of the mechanisms involved in the pathophysiology underlying varicocele development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jarow JP. Effects of varicocele on male fertility. Hum Reprod Update. 2001;7:59–64.

    Article  CAS  PubMed  Google Scholar 

  2. Mokhtari G, Pourreza F, Falahatkar S, Kamran AN, Jamali M. Comparison of prevalence of varicocele in first-degree relatives of patients with varicocele and male kidney donors. Urology. 2008;71:666–8. https://doi.org/10.1016/j.urology.2007.11.116.

    Article  PubMed  Google Scholar 

  3. Gökçe A, et al. Hereditary behavior of varicocele. J Androl. 2010;31:288–90. https://doi.org/10.2164/jandrol.109.008698.

    Article  PubMed  Google Scholar 

  4. Brown JS, Dubin L, Hotchkiss RS. The varicocele as related to fertility. Fertil Steril. 1967;18:46–56.

    Article  CAS  PubMed  Google Scholar 

  5. Naughton CK, Nangia AK, Agarwal A. Pathophysiology of varicoceles in male infertility. Hum Reprod Update. 2001;7:473–81.

    Article  CAS  PubMed  Google Scholar 

  6. Sheehan MM, Ramasamy R, Lamb DJ. Molecular mechanisms involved in varicocele-associated infertility. J Assist Reprod Genet. 2014;31:521–6. https://doi.org/10.1007/s10815-014-0200-9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Santana VP, Miranda-Furtado CL, de Oliveira-Gennaro FG, Dos Reis RM. Genetics and epigenetics of varicocele pathophysiology: an overview. J Assist Reprod Genet. 2017;34:839–47. https://doi.org/10.1007/s10815-017-0931-5.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Foresta C, Ferlin A, Gianaroli L, Dallapiccola B. Guidelines for the appropriate use of genetic tests in infertile couples. Eur J Hum Genet. 2002;10:303–12. https://doi.org/10.1038/sj.ejhg.5200805.

    Article  PubMed  Google Scholar 

  9. Dada R, Gupta NP, Kucheria K. Cytogenetic and molecular analysis of male infertility: Y chromosome deletion during nonobstructive azoospermia and severe oligozoospermia. Cell Biochem Biophys. 2006;44:171–7. https://doi.org/10.1385/CBB:44:1:171.

    Article  CAS  PubMed  Google Scholar 

  10. Van Assche E, et al. Cytogenetics of infertile men. Hum Reprod. 1996;11(Suppl 4):1–24; discussion 25-26.

    Article  PubMed  Google Scholar 

  11. Shi Q, Martin RH. Aneuploidy in human spermatozoa: FISH analysis in men with constitutional chromosomal abnormalities, and in infertile men. Reproduction. 2001;121:655–66.

    Article  CAS  PubMed  Google Scholar 

  12. Johnson MD. Genetic risks of intracytoplasmic sperm injection in the treatment of male infertility: recommendations for genetic counseling and screening. Fertil Steril. 1998;70:397–411.

    Article  CAS  PubMed  Google Scholar 

  13. Rao L, et al. Chromosomal abnormalities and y chromosome microdeletions in infertile men with varicocele and idiopathic infertility of South Indian origin. J Androl. 2004;25:147–53.

    Article  PubMed  Google Scholar 

  14. Stahl BC, Patil SR, Syrop CH, Sparks AE, Wald M. Supernumerary minute ring chromosome 14 in a man with primary infertility and left varicocele. Fertil Steril. 2007;87:1213.e1211–3. https://doi.org/10.1016/j.fertnstert.2006.09.008.

    Article  Google Scholar 

  15. Crolla JA. FISH and molecular studies of autosomal supernumerary marker chromosomes excluding those derived from chromosome 15: II. Review of the literature. Am J Med Genet. 1998;75:367–81.

    Article  CAS  PubMed  Google Scholar 

  16. Gentile M, et al. Infertility in carriers of two bisatellited marker chromosomes. Clin Genet. 1993;44:71–5.

    Article  CAS  PubMed  Google Scholar 

  17. Lee J, et al. Detailed analysis of isodicentric Y in a case with azoospermia and 45,x/46,x,idic(Y) mosaicism. Ann Clin Lab Sci. 2015;45:206–8.

    CAS  PubMed  Google Scholar 

  18. DesGroseilliers M, Beaulieu Bergeron M, Brochu P, Lemyre E, Lemieux N. Phenotypic variability in isodicentric Y patients: study of nine cases. Clin Genet. 2006;70:145–50. https://doi.org/10.1111/j.1399-0004.2006.00654.x.

    Article  CAS  PubMed  Google Scholar 

  19. Vergnaud G, et al. A deletion map of the human Y chromosome based on DNA hybridization. Am J Hum Genet. 1986;38:109–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dada R, Gupta NP, Kucheria K. AZF microdeletions associated with idiopathic and non-idiopathic cases with cryptorchidism and varicocele. Asian J Androl. 2002;4:259–63.

    PubMed  Google Scholar 

  21. Vogt PH, et al. Human Y chromosome azoospermia factors (AZF) mapped to different subregions in Yq11. Hum Mol Genet. 1996;5:933–43.

    Article  CAS  PubMed  Google Scholar 

  22. Moro E, Marin P, Rossi A, Garolla A, Ferlin A. Y chromosome microdeletions in infertile men with varicocele. Mol Cell Endocrinol. 2000;161:67–71.

    Article  CAS  PubMed  Google Scholar 

  23. Foppiani L, et al. Lack of evidence of a genetic origin in the impaired spermatogenesis of a patient cohort with low-grade varicocele. J Endocrinol Investig. 2001;24:217–23. https://doi.org/10.1007/BF03343850.

    Article  CAS  Google Scholar 

  24. Gao DJ, et al. Screening of Y chromosome microdeletions in infertile males with varicocele. Zhonghua Nan Ke Xue. 2012;18:973–7.

    CAS  PubMed  Google Scholar 

  25. Dai RL, et al. Varicocele and male infertility in Northeast China: Y chromosome microdeletion as an underlying cause. Genet Mol Res. 2015;14:6583–90. https://doi.org/10.4238/2015.June.12.13.

    Article  CAS  PubMed  Google Scholar 

  26. de Sousa Filho EP, Christofolini DM, Barbosa CP, Glina S, Bianco B. Y chromosome microdeletions and varicocele as aetiological factors of male infertility: a cross-sectional study. Andrologia. 2018;50 https://doi.org/10.1111/and.12938.

    Article  Google Scholar 

  27. Cayan S, Lee D, Black LD, Reijo Pera RA, Turek PJ. Response to varicocelectomy in oligospermic men with and without defined genetic infertility. Urology. 2001;57:530–5.

    Article  CAS  PubMed  Google Scholar 

  28. Harton GL, Tempest HG. Chromosomal disorders and male infertility. Asian J Androl. 2012;14:32–9. https://doi.org/10.1038/aja.2011.66.

    Article  PubMed  Google Scholar 

  29. Finkelstein S, Mukamel E, Yavetz H, Paz G, Avivi L. Increased rate of nondisjunction in sex cells derived from low-quality semen. Hum Genet. 1998;102:129–37.

    Article  CAS  PubMed  Google Scholar 

  30. Egozcue J, et al. Genetic analysis of sperm and implications of severe male infertility--a review. Placenta. 2003;24(Suppl B):S62–5.

    Article  CAS  PubMed  Google Scholar 

  31. Mroz K, Hassold TJ, Hunt PA. Meiotic aneuploidy in the XXY mouse: evidence that a compromised testicular environment increases the incidence of meiotic errors. Hum Reprod. 1999;14:1151–6.

    Article  CAS  PubMed  Google Scholar 

  32. Reichart M, et al. Sperm ultramorphology as a pathophysiological indicator of spermatogenesis in males suffering from varicocele. Andrologia. 2000;32:139–45.

    Article  CAS  PubMed  Google Scholar 

  33. Baccetti BM, et al. Studies on varicocele III: ultrastructural sperm evaluation and 18, X and Y aneuploidies. J Androl. 2006;27:94–101. https://doi.org/10.2164/jandrol.05081.

    Article  PubMed  Google Scholar 

  34. Acar H, Kilinc M, Guven S, Yurdakul T, Celik R. Comparison of semen profile and frequency of chromosome aneuploidies in sperm nuclei of patients with varicocele before and after varicocelectomy. Andrologia. 2009;41:157–62. https://doi.org/10.1111/j.1439-0272.2008.00907.x.

    Article  CAS  PubMed  Google Scholar 

  35. Schafer AJ, Hawkins JR. DNA variation and the future of human genetics. Nat Biotechnol. 1998;16:33–9. https://doi.org/10.1038/nbt0198-33.

    Article  CAS  PubMed  Google Scholar 

  36. Massart A, Lissens W, Tournaye H, Stouffs K. Genetic causes of spermatogenic failure. Asian J Androl. 2012;14:40–8. https://doi.org/10.1038/aja.2011.67.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang S, et al. Association between DAZL polymorphisms and susceptibility to male infertility: systematic review with meta-analysis and trial sequential analysis. Sci Rep. 2014;4:4642. https://doi.org/10.1038/srep04642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jiang W, et al. Systematic review and meta-analysis of the genetic association between protamine polymorphism and male infertility. Andrologia. 2018; https://doi.org/10.1111/and.12990.

    Article  CAS  PubMed  Google Scholar 

  39. Chen SS, Chang LS, Chen HW, Wei YH. Polymorphisms of glutathione S-transferase M1 and male infertility in Taiwanese patients with varicocele. Hum Reprod. 2002;17:718–25.

    Article  CAS  PubMed  Google Scholar 

  40. Acar H, Kılınç M, Guven S, Inan Z. Glutathione S-transferase M1 and T1 polymorphisms in Turkish patients with varicocele. Andrologia. 2012;44:34–7. https://doi.org/10.1111/j.1439-0272.2010.01103.x.

    Article  CAS  PubMed  Google Scholar 

  41. Wu Q, et al. Influence of polymorphism of glutathione S-transferase T1 on Chinese infertile patients with varicocele. Fertil Steril. 2009;91:960–2. https://doi.org/10.1016/j.fertnstert.2007.08.061.

    Article  PubMed  Google Scholar 

  42. Chen SS, Chiu LP. The hOGG1 Ser326Cys polymorphism and male subfertility in Taiwanese patients with varicocele. Andrologia. 2018:e13007. https://doi.org/10.1111/and.13007.

    Article  PubMed  Google Scholar 

  43. Heidari MM, Khatami M, Talebi AR, Moezzi F. Mutation analysis of TNP1 gene in infertile men with varicocele. Iran J Reprod Med. 2014;12:257–62.

    PubMed  PubMed Central  Google Scholar 

  44. Kahraman CY, et al. The Relationship Between Endothelial Nitric Oxide Synthase Gene (NOS3) Polymorphisms, NOS3 Expression, and Varicocele. Genet Test Mol Biomarkers. 2016;20:191–6. https://doi.org/10.1089/gtmb.2015.0294.

    Article  CAS  PubMed  Google Scholar 

  45. Ucar VB, Nami B, Acar H, Kilinç M. Is methylenetetrahydrofolate reductase (MTHFR) gene A1298C polymorphism related with varicocele risk? Andrologia. 2015;47:42–6. https://doi.org/10.1111/and.12229.

    Article  CAS  PubMed  Google Scholar 

  46. Gentile V, et al. ACP1 genetic polymorphism and spermatic parameters in men with varicocele. Andrologia. 2014;46:147–50. https://doi.org/10.1111/and.12059.

    Article  CAS  PubMed  Google Scholar 

  47. Gentile V, et al. The relationship between p53 codon 72 genetic polymorphism and sperm parameters. A study of men with varicocele. Reprod Med Biol. 2015;14:11–5. https://doi.org/10.1007/s12522-014-0188-y.

    Article  CAS  PubMed  Google Scholar 

  48. Tang K, et al. Genetic polymorphisms of glutathione S-transferase M1, T1, and P1, and the assessment of oxidative damage in infertile men with varicoceles from northwestern China. J Androl. 2012;33:257–63. https://doi.org/10.2164/jandrol.110.012468.

    Article  CAS  PubMed  Google Scholar 

  49. Okubo K, et al. GSTT1 and GSTM1 polymorphisms are associated with improvement in seminal findings after varicocelectomy. Fertil Steril. 2005;83:1579–80. https://doi.org/10.1016/j.fertnstert.2004.11.057.

    Article  CAS  PubMed  Google Scholar 

  50. Ichioka K, et al. Genetic polymorphisms in glutathione S-transferase T1 affect the surgical outcome of varicocelectomies in infertile patients. Asian J Androl. 2009;11:333–41. https://doi.org/10.1038/aja.2008.27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shen H, Ong C. Detection of oxidative DNA damage in human sperm and its association with sperm function and male infertility. Free Radic Biol Med. 2000;28:529–36.

    Article  CAS  PubMed  Google Scholar 

  52. Aoki VW, Liu L, Carrell DT. Identification and evaluation of a novel sperm protamine abnormality in a population of infertile males. Hum Reprod. 2005;20:1298–306. https://doi.org/10.1093/humrep/deh798.

    Article  CAS  PubMed  Google Scholar 

  53. Miyagawa Y, et al. Single-nucleotide polymorphisms and mutation analyses of the TNP1 and TNP2 genes of fertile and infertile human male populations. J Androl. 2005;26:779–86. https://doi.org/10.2164/jandrol.05069.

    Article  CAS  PubMed  Google Scholar 

  54. Siasi E, Aleyasin A, Mowla J, Sahebkashaf H. Association study of six SNPs in PRM1, PRM2 and TNP2 genes in iranian infertile men with idiopathic azoospermia. Iran J Reprod Med. 2012;10:329–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature. 1994;368:850–3. https://doi.org/10.1038/368850a0.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang MX, et al. Biogenesis of short intronic repeat 27-nucleotide small RNA from endothelial nitric-oxide synthase gene. J Biol Chem. 2008;283:14685–93. https://doi.org/10.1074/jbc.M801933200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Godfrey V, et al. The functional consequence of the Glu298Asp polymorphism of the endothelial nitric oxide synthase gene in young healthy volunteers. Cardiovasc Drug Rev. 2007;25:280–8. https://doi.org/10.1111/j.1527-3466.2007.00017.x.

    Article  CAS  PubMed  Google Scholar 

  58. Födinger M, Hörl WH, Sunder-Plassmann G. Molecular biology of 5,10-methylenetetrahydrofolate reductase. J Nephrol. 2000;13:20–33.

    PubMed  Google Scholar 

  59. La Salle S, et al. Loss of spermatogonia and wide-spread DNA methylation defects in newborn male mice deficient in DNMT3L. BMC Dev Biol. 2007;7:104. https://doi.org/10.1186/1471-213X-7-104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schwahn B, Rozen R. Polymorphisms in the methylenetetrahydrofolate reductase gene: clinical consequences. Am J Pharmacogenomics. 2001;1:189–201.

    Article  CAS  PubMed  Google Scholar 

  61. Singh K, Singh SK, Sah R, Singh I, Raman R. Mutation C677T in the methylenetetrahydrofolate reductase gene is associated with male infertility in an Indian population. Int J Androl. 2005;28:115–9. https://doi.org/10.1111/j.1365-2605.2004.00513.x.

    Article  CAS  PubMed  Google Scholar 

  62. Lee HC, et al. Association study of four polymorphisms in three folate-related enzyme genes with non-obstructive male infertility. Hum Reprod. 2006;21:3162–70. https://doi.org/10.1093/humrep/del280.

    Article  CAS  PubMed  Google Scholar 

  63. Stefani M, et al. Dephosphorylation of tyrosine phosphorylated synthetic peptides by rat liver phosphotyrosine protein phosphatase isoenzymes. FEBS Lett. 1993;326:131–4.

    Article  CAS  PubMed  Google Scholar 

  64. Bottini N, Bottini E, Gloria-Bottini F, Mustelin T. Low-molecular-weight protein tyrosine phosphatase and human disease: in search of biochemical mechanisms. Arch Immunol Ther Exp (Warsz). 2002;50:95–104.

    CAS  Google Scholar 

  65. Mashayekhi F, Hadiyan SP. A single-nucleotide polymorphism in TP53 may be a genetic risk factor for Iranian patients with idiopathic male infertility. Andrologia. 2012;44(Suppl 1):560–4. https://doi.org/10.1111/j.1439-0272.2011.01227.x.

    Article  CAS  PubMed  Google Scholar 

  66. Dumont P, Leu JI, Della Pietra AC, George DL, Murphy M. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet. 2003;33:357–65. https://doi.org/10.1038/ng1093.

    Article  CAS  PubMed  Google Scholar 

  67. Sullivan A, et al. Polymorphism in wild-type p53 modulates response to chemotherapy in vitro and in vivo. Oncogene. 2004;23:3328–37. https://doi.org/10.1038/sj.onc.1207428.

    Article  CAS  PubMed  Google Scholar 

  68. Logan DC. The mitochondrial compartment. J Exp Bot. 2007;58:1225–43.

    PubMed  Google Scholar 

  69. Tait SW, Green DR. Mitochondria and cell signalling. J Cell Sci. 2012;125:807–15. https://doi.org/10.1242/jcs.099234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Park CB, Larsson NG. Mitochondrial DNA mutations in disease and aging. J Cell Biol. 2011;193:809–18. https://doi.org/10.1083/jcb.201010024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Folgerø T, Bertheussen K, Lindal S, Torbergsen T, Oian P. Mitochondrial disease and reduced sperm motility. Hum Reprod. 1993;8:1863–8.

    Article  PubMed  Google Scholar 

  72. Song GJ, Lewis V. Mitochondrial DNA integrity and copy number in sperm from infertile men. Fertil Steril. 2008;90:2238–44. https://doi.org/10.1016/j.fertnstert.2007.10.059.

    Article  CAS  PubMed  Google Scholar 

  73. Luo SM, Schatten H, Sun QY. Sperm mitochondria in reproduction: good or bad and where do they go? J Genet Genomics. 2013;40:549–56. https://doi.org/10.1016/j.jgg.2013.08.004.

    Article  CAS  PubMed  Google Scholar 

  74. Moraes CR, Meyers S. The sperm mitochondrion: organelle of many functions. Anim Reprod Sci. 2018; https://doi.org/10.1016/j.anireprosci.2018.03.024.

    Article  CAS  PubMed  Google Scholar 

  75. Rajender S, Rahul P, Mahdi AA. Mitochondria, spermatogenesis and male infertility. Mitochondrion. 2010;10:419–28. https://doi.org/10.1016/j.mito.2010.05.015.

    Article  CAS  PubMed  Google Scholar 

  76. Ramalho-Santos J, et al. Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells. Hum Reprod Update. 2009;15:553–72. https://doi.org/10.1093/humupd/dmp016.

    Article  CAS  PubMed  Google Scholar 

  77. Chen SS, Huang WJ, Chang LS, Wei YH. 8-hydroxy-2’-deoxyguanosine in leukocyte DNA of spermatic vein as a biomarker of oxidative stress in patients with varicocele. J Urol. 2004;172:1418–21.

    Article  CAS  PubMed  Google Scholar 

  78. Aitken RJ, Baker MA. Oxidative stress, sperm survival and fertility control. Mol Cell Endocrinol. 2006;250:66–9. https://doi.org/10.1016/j.mce.2005.12.026.

    Article  CAS  PubMed  Google Scholar 

  79. Sawyer DE, Van Houten B. Repair of DNA damage in mitochondria. Mutat Res. 1999;434:161–76.

    Article  CAS  PubMed  Google Scholar 

  80. St John JC, Jokhi RP, Barratt CL. The impact of mitochondrial genetics on male infertility. Int J Androl. 2005;28:65–73. https://doi.org/10.1111/j.1365-2605.2005.00515.x.

    Article  CAS  PubMed  Google Scholar 

  81. Spiropoulos J, Turnbull DM, Chinnery PF. Can mitochondrial DNA mutations cause sperm dysfunction? Mol Hum Reprod. 2002;8:719–21.

    Article  CAS  PubMed  Google Scholar 

  82. Gashti NG, Salehi Z, Madani AH, Dalivandan ST. 4977-bp mitochondrial DNA deletion in infertile patients with varicocele. Andrologia. 2014;46:258–62. https://doi.org/10.1111/and.12073.

    Article  CAS  PubMed  Google Scholar 

  83. Kao SH, Chao HT, Wei YH. Multiple deletions of mitochondrial DNA are associated with the decline of motility and fertility of human spermatozoa. Mol Hum Reprod. 1998;4:657–66.

    Article  CAS  PubMed  Google Scholar 

  84. Baklouti-Gargouri S, et al. Mitochondrial DNA mutations and polymorphisms in asthenospermic infertile men. Mol Biol Rep. 2013;40:4705–12. https://doi.org/10.1007/s11033-013-2566-7.

    Article  CAS  PubMed  Google Scholar 

  85. Nissanka N, Moraes CT. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett. 2018;592:728–42. https://doi.org/10.1002/1873-3468.12956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jena NR. DNA damage by reactive species: Mechanisms, mutation and repair. J Biosci. 2012;37:503–17.

    Article  CAS  PubMed  Google Scholar 

  87. St John JC, Sakkas D, Barratt CL. A role for mitochondrial DNA and sperm survival. J Androl. 2000;21:189–99.

    CAS  PubMed  Google Scholar 

  88. Heidari MM, et al. Mitochondrial genetic variation in iranian infertile men with varicocele. Int J Fertil Steril. 2016;10:303–9.

    PubMed  PubMed Central  Google Scholar 

  89. Wai T, et al. The role of mitochondrial DNA copy number in mammalian fertility. Biol Reprod. 2010;83:52–62. https://doi.org/10.1095/biolreprod.109.080887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gabriel MS, Chan SW, Alhathal N, Chen JZ, Zini A. Influence of microsurgical varicocelectomy on human sperm mitochondrial DNA copy number: a pilot study. J Assist Reprod Genet. 2012;29:759–64. https://doi.org/10.1007/s10815-012-9785-z.

    Article  PubMed  PubMed Central  Google Scholar 

  91. St John JC, Bowles EJ, Amaral A. Sperm mitochondria and fertilisation. Soc Reprod Fertil. 2007;Suppl 65:399–416.

    Google Scholar 

  92. Holliday R. The inheritance of epigenetic defects. Science. 1987;238:163–70.

    Article  CAS  PubMed  Google Scholar 

  93. Schagdarsurengin U, Paradowska A, Steger K. Analysing the sperm epigenome: roles in early embryogenesis and assisted reproduction. Nat Rev Urol. 2012;9:609–19. https://doi.org/10.1038/nrurol.2012.183.

    Article  CAS  PubMed  Google Scholar 

  94. Morgan HD, Santos F, Green K, Dean W, Reik W. Epigenetic reprogramming in mammals. Hum Mol Genet. 2005;14 Spec No 1:R47–58. https://doi.org/10.1093/hmg/ddi114.

    Article  CAS  PubMed  Google Scholar 

  95. Carrell DT. Epigenetics of the male gamete. Fertil Steril. 2012;97:267–74. https://doi.org/10.1016/j.fertnstert.2011.12.036.

    Article  CAS  PubMed  Google Scholar 

  96. Ng HH, Bird A. DNA methylation and chromatin modification. Curr Opin Genet Dev. 1999;9:158–63.

    Article  CAS  PubMed  Google Scholar 

  97. Lister R, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462:315–22. https://doi.org/10.1038/nature08514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jin B, Li Y, Robertson KD. DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer. 2011;2:607–17. https://doi.org/10.1177/1947601910393957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lan J, Hua S, He X, Zhang Y. DNA methyltransferases and methyl-binding proteins of mammals. Acta Biochim Biophys Sin. 2010;42:243–52.

    Article  CAS  PubMed  Google Scholar 

  100. Tunc O, Tremellen K. Oxidative DNA damage impairs global sperm DNA methylation in infertile men. J Assist Reprod Genet. 2009;26:537–44. https://doi.org/10.1007/s10815-009-9346-2.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Marques CJ, et al. DNA methylation imprinting marks and DNA methyltransferase expression in human spermatogenic cell stages. Epigenetics. 2011;6:1354–61. https://doi.org/10.4161/epi.6.11.17993.

    Article  CAS  PubMed  Google Scholar 

  102. Benchaib M, et al. Influence of global sperm DNA methylation on IVF results. Hum Reprod. 2005;20:768–73. https://doi.org/10.1093/humrep/deh684.

    Article  CAS  PubMed  Google Scholar 

  103. Ichiyanagi T, Ichiyanagi K, Miyake M, Sasaki H. Accumulation and loss of asymmetric non-CpG methylation during male germ-cell development. Nucleic Acids Res. 2013;41:738–45. https://doi.org/10.1093/nar/gks1117.

    Article  CAS  PubMed  Google Scholar 

  104. Navarro-Costa P, et al. Incorrect DNA methylation of the DAZL promoter CpG island associates with defective human sperm. Hum Reprod. 2010;25:2647–54. https://doi.org/10.1093/humrep/deq200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hammoud SS, Purwar J, Pflueger C, Cairns BR, Carrell DT. Alterations in sperm DNA methylation patterns at imprinted loci in two classes of infertility. Fertil Steril. 2010;94:1728–33. https://doi.org/10.1016/j.fertnstert.2009.09.010.

    Article  CAS  PubMed  Google Scholar 

  106. Urdinguio RG, et al. Aberrant DNA methylation patterns of spermatozoa in men with unexplained infertility. Hum Reprod. 2015;30:1014–28. https://doi.org/10.1093/humrep/dev053.

    Article  CAS  PubMed  Google Scholar 

  107. Benchaib M, et al. Quantitation by image analysis of global DNA methylation in human spermatozoa and its prognostic value in in vitro fertilization: a preliminary study. Fertil Steril. 2003;80:947–53.

    Article  PubMed  Google Scholar 

  108. Bahreinian M, et al. DNA hypomethylation predisposes sperm to DNA damage in individuals with varicocele. Syst Biol Reprod Med. 2015;61:179–86. https://doi.org/10.3109/19396368.2015.1020116.

    Article  CAS  PubMed  Google Scholar 

  109. Tavalaee M, Bahreinian M, Barekat F, Abbasi H, Nasr-Esfahani MH. Effect of varicocelectomy on sperm functional characteristics and DNA methylation. Andrologia. 2014; https://doi.org/10.1111/and.12345.

  110. Reik W, Santos F, Dean W. Mammalian epigenomics: reprogramming the genome for development and therapy. Theriogenology. 2003;59:21–32.

    Article  CAS  PubMed  Google Scholar 

  111. Wang Z, Schones DE, Zhao K. Characterization of human epigenomes. Curr Opin Genet Dev. 2009;19:127–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sonnack V, Failing K, Bergmann M, Steger K. Expression of hyperacetylated histone H4 during normal and impaired human spermatogenesis. Andrologia. 2002;34:384–90.

    Article  CAS  PubMed  Google Scholar 

  113. Hammoud SS, et al. Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men. Hum Reprod. 2011;26:2558–69. https://doi.org/10.1093/humrep/der192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. García-Peiró A, et al. Protamine 1 to protamine 2 ratio correlates with dynamic aspects of DNA fragmentation in human sperm. Fertil Steril. 2011;95:105–9. https://doi.org/10.1016/j.fertnstert.2010.06.053.

    Article  CAS  PubMed  Google Scholar 

  115. Ni K, et al. Sperm protamine mRNA ratio and DNA fragmentation index represent reliable clinical biomarkers for men with varicocele after microsurgical varicocele ligation. J Urol. 2014;192:170–6. https://doi.org/10.1016/j.juro.2014.02.046.

    Article  CAS  PubMed  Google Scholar 

  116. Abhari A, et al. Significance of microRNA targeted estrogen receptor in male fertility. Iran J Basic Med Sci. 2014;17:81–6.

    PubMed  PubMed Central  Google Scholar 

  117. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20. https://doi.org/10.1016/j.cell.2004.12.035.

    Article  CAS  PubMed  Google Scholar 

  118. Inui M, Martello G, Piccolo S. MicroRNA control of signal transduction. Nat Rev Mol Cell Biol. 2010;11:252–63. https://doi.org/10.1038/nrm2868.

    Article  CAS  PubMed  Google Scholar 

  119. Ro S, Park C, Sanders KM, McCarrey JR, Yan W. Cloning and expression profiling of testis-expressed microRNAs. Dev Biol. 2007;311:592–602. https://doi.org/10.1016/j.ydbio.2007.09.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lian J, et al. Altered microRNA expression in patients with non-obstructive azoospermia. Reprod Biol Endocrinol. 2009;7:13. https://doi.org/10.1186/1477-7827-7-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Abu-Halima M, et al. Altered microRNA expression profiles of human spermatozoa in patients with different spermatogenic impairments. Fertil Steril. 2013;99:1249–1255.e1216. https://doi.org/10.1016/j.fertnstert.2012.11.054.

    Article  CAS  PubMed  Google Scholar 

  122. Wang C, et al. Altered profile of seminal plasma microRNAs in the molecular diagnosis of male infertility. Clin Chem. 2011;57:1722–31. https://doi.org/10.1373/clinchem.2011.169714.

    Article  CAS  PubMed  Google Scholar 

  123. Leung AK, Sharp PA. MicroRNA functions in stress responses. Mol Cell. 2010;40:205–15. https://doi.org/10.1016/j.molcel.2010.09.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mostafa T, et al. Seminal miRNA relationship with apoptotic markers and oxidative stress in infertile men with varicocele. Biomed Res Int. 2016;2016:4302754. https://doi.org/10.1155/2016/4302754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ji Z, et al. Expressions of miR-15a and its target gene HSPA1B in the spermatozoa of patients with varicocele. Reproduction. 2014;147:693–701. https://doi.org/10.1530/REP-13-0656.

    Article  CAS  PubMed  Google Scholar 

  126. Li G, Luna C, Qiu J, Epstein DL, Gonzalez P. Alterations in microRNA expression in stress-induced cellular senescence. Mech Ageing Dev. 2009;130:731–41. https://doi.org/10.1016/j.mad.2009.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Eddy EM. Male germ cell gene expression. Recent Prog Horm Res. 2002;57:103–28.

    Article  CAS  PubMed  Google Scholar 

  128. Miller D, Ostermeier GC, Krawetz SA. The controversy, potential and roles of spermatozoal RNA. Trends Mol Med. 2005;11:156–63. https://doi.org/10.1016/j.molmed.2005.02.006.

    Article  CAS  PubMed  Google Scholar 

  129. Lambard S, et al. Analysis and significance of mRNA in human ejaculated sperm from normozoospermic donors: relationship to sperm motility and capacitation. Mol Hum Reprod. 2004;10:535–41. https://doi.org/10.1093/molehr/gah064.

    Article  CAS  PubMed  Google Scholar 

  130. Li C, Zhou X. Gene transcripts in spermatozoa: markers of male infertility. Clin Chim Acta. 2012;413:1035–8. https://doi.org/10.1016/j.cca.2012.03.002.

    Article  CAS  PubMed  Google Scholar 

  131. Zalata AA, et al. Androgen receptor expression relationship with semen variables in infertile men with varicocele. J Urol. 2013;189:2243–7. https://doi.org/10.1016/j.juro.2012.11.112.

    Article  CAS  PubMed  Google Scholar 

  132. Del Giudice PT, et al. Expression of the Fas-ligand gene in ejaculated sperm from adolescents with and without varicocele. J Assist Reprod Genet. 2010;27:103–9. https://doi.org/10.1007/s10815-010-9384-9.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Mostafa T, Rashed L, Nabil N, Amin R. Seminal BAX and BCL2 gene and protein expressions in infertile men with varicocele. Urology. 2014;84:590–5. https://doi.org/10.1016/j.urology.2014.05.016.

    Article  PubMed  Google Scholar 

  134. Ferlin A, et al. Heat shock protein and heat shock factor expression in sperm: relation to oligozoospermia and varicocele. J Urol. 2010;183:1248–52. https://doi.org/10.1016/j.juro.2009.11.009.

    Article  CAS  PubMed  Google Scholar 

  135. Yeşilli C, et al. Effect of varicocelectomy on sperm creatine kinase, HspA2 chaperone protein (creatine kinase-M type), LDH, LDH-X, and lipid peroxidation product levels in infertile men with varicocele. Urology. 2005;66:610–5. https://doi.org/10.1016/j.urology.2005.03.078.

    Article  PubMed  Google Scholar 

  136. Lima SB, et al. Expression of the HSPA2 gene in ejaculated spermatozoa from adolescents with and without varicocele. Fertil Steril. 2006;86:1659–63. https://doi.org/10.1016/j.fertnstert.2006.05.030.

    Article  CAS  PubMed  Google Scholar 

  137. Janghorban-Laricheh E, et al. An association between sperm PLCζ levels and varicocele? J Assist Reprod Genet. 2016;33:1649–55. https://doi.org/10.1007/s10815-016-0802-5.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Oliveira A, et al. Comparative study of gene expression in patients with varicocele by microarray technology. Andrologia. 2012;44(Suppl 1):260–5. https://doi.org/10.1111/j.1439-0272.2011.01173.x.

    Article  CAS  PubMed  Google Scholar 

  139. Amer MK, Mostafa RM, Fathy A, Saad HM, Mostafa T. Ropporin gene expression in infertile asthenozoospermic men with varicocele before and after repair. Urology. 2015;85:805–8. https://doi.org/10.1016/j.urology.2014.12.033.

    Article  PubMed  Google Scholar 

  140. Wang RS, Yeh S, Tzeng CR, Chang C. Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice. Endocr Rev. 2009;30:119–32. https://doi.org/10.1210/er.2008-0025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Almeida C, et al. Caspase signalling pathways in human spermatogenesis. J Assist Reprod Genet. 2013;30:487–95. https://doi.org/10.1007/s10815-013-9938-8.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Mieusset R, Bujan L. Testicular heating and its possible contributions to male infertility: a review. Int J Androl. 1995;18:169–84.

    Article  CAS  PubMed  Google Scholar 

  143. Lanneau D, et al. Heat shock proteins: essential proteins for apoptosis regulation. J Cell Mol Med. 2008;12:743–61. https://doi.org/10.1111/j.1582-4934.2008.00273.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Aghajanpour S, et al. Quantitative expression of phospholipase C zeta, as an index to assess fertilization potential of a semen sample. Hum Reprod. 2011;26:2950–6. https://doi.org/10.1093/humrep/der285.

    Article  CAS  PubMed  Google Scholar 

  145. Yelumalai S, et al. Total levels, localization patterns, and proportions of sperm exhibiting phospholipase C zeta are significantly correlated with fertilization rates after intracytoplasmic sperm injection. Fertil Steril. 2015;104:561–568.e564. https://doi.org/10.1016/j.fertnstert.2015.05.018.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosana Maria dos Reis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santana, V.P., Miranda-Furtado, C.L., dos Reis, R.M. (2019). Genetics and Epigenetics of Varicocele Pathophysiology. In: Esteves, S., Cho, CL., Majzoub, A., Agarwal, A. (eds) Varicocele and Male Infertility. Springer, Cham. https://doi.org/10.1007/978-3-319-79102-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-79102-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-79101-2

  • Online ISBN: 978-3-319-79102-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics