Skip to main content

Using Modeling to Understand the Hygromechanical and Hysteretic Behavior of the S2 Cell Wall Layer of Wood

  • Chapter
  • First Online:

Abstract

To understand moisture sorption and swelling of wood requires revealing the behavior at the S2 cell wall layer, one of the layers of the secondary cell wall, at the atomistic scale. Difficulties in experimentally determining the organization and properties of S2 layer at such a small scale are a stumbling block for understanding of swelling and sorption in their full complexity. Recent works using atomistic modeling (Molecular Dynamics (MD) and Grand Canonical Monte Carlo) provide complementary insights. The linear dependence between moisture content, swelling, and porosity change is found to be correlated with the number and location of water–polymer hydrogen bonds within the system. Such information is upscaled for general use within a poromechanical framework. This chapter summarizes recent new physical insights in the sorption and swelling behavior of the S2 cell wall layer, stemming from validated MD work. The presented methodology is also used to unravel other moisture-related mechanisms of wood, such as hysteretic behavior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bader T, Hofstetter K, Hellmich C, Eberhardsteiner J (2011) The poroelastic role of water in cell walls of the hierarchical composite softwood. Acta Mechanica 217:75–100

    Article  Google Scholar 

  • Beever DK, Valentine L (1958) Studies on the sorption of moisture by polymers. Part IV. Interval and integral sorption of water vapor by polymers. J Polym Sci A 32:521–522

    CAS  Google Scholar 

  • Berendsen HJC, POstma JPM, van Gunsteren WF, DiNola ARHJ (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  CAS  Google Scholar 

  • Boutelje JB (1962) The relationship of structure to transverse anisotropy in wood with reference to shrinkage and elasticity. Holzforschung 16:33–46

    Article  CAS  Google Scholar 

  • Brochard L, Vandamme M, Pellenq RJM (2012) Poromechanics of microporous media. J Mech Phys Solids 60:606–622

    Article  CAS  Google Scholar 

  • Carmeliet J, Derome D, Dressler M, Guyer R (2013) Nonlinear poro-elastic model for unsaturated porous solids. J Appl Mech 80(2):020909

    Article  Google Scholar 

  • Charlier L, Mazeau K (2012) Molecular modeling of the structural and dynamical properties of secondary plant cell walls: influence of lignin chemistry. J Phys Chem B 116(14):4163–4174

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2014) Re-constructing our models of cellulose and primary cell wall assembly. Curr Opin Plant Biol 22:122–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derome D, Griffa M, Koebel M, Carmeliet J (2011) Hysteretic swelling of wood at cellular scale probed by phase-contrast X-ray tomography. J Struct Biol 173:180–190

    Article  PubMed  Google Scholar 

  • Derome D, Rafsanjani A, Patera A, Guyer R, Carmeliet J (2012) Hygromorphic behaviour of cellular material: hysteretic swelling and shrinkage of wood probed by phase contrast X-ray tomography. Phil Mag 92:3680–3698

    Article  CAS  Google Scholar 

  • Dinwoodie JM (2000) Timber, its nature and behaviour, 2nd. E & FN Spon, London, New York, England

    Google Scholar 

  • Eichhorn S (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–315

    Article  CAS  Google Scholar 

  • Fahlén J, Salmén L (2005) Pore and matric distribution in the fiber wall revealed by atomic force microscopy and image analysis. Biomacromol 6(1):433–438

    Article  CAS  Google Scholar 

  • Forest Products Laboratory (2010) Wood handbook—wood as an engineering material. General Technical Report FPL-GTR-190. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 508 p

    Google Scholar 

  • Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  PubMed  Google Scholar 

  • Hofstetter K, Hellmich C, Eberhardsteiner J (2005) Development and experimental validation of a continuum micromechanics model for the elasticity of wood. Eur J Mech A/Solids 24:1030–1053

    Article  Google Scholar 

  • Höfter H, Gonneau M, Vernhettes S (2007) 2.22 Biosynthesis of cellulose. In: Kalerming H (ed) Comprehensive glycoscience. Oxford Elsevier, pp 737–763

    Chapter  Google Scholar 

  • Jin K, Qin Z, Buhler M (2015) Molecular deformation mechanisms of the wood cell wall material. J Mech Behav Biomed Mater 42:198–206

    Article  CAS  PubMed  Google Scholar 

  • Kulasinski K (2015) Physical and mechanical aspects of moisture adsorption in wood biopolymers investigated with atomistic simulations. Dissertation ETH No. 23046, ETH Zurich

    Google Scholar 

  • Kulasinski K, Keten S, Churakov SV, Derome D, Carmeliet J (2014a) A comparative molecular dynamics study of crystalline, paracrystalline and amorphous states of cellulose. Cellulose 21:1103–1116

    Article  CAS  Google Scholar 

  • Kulasinski K, Keten S, Churakov S, Guyer R, Derome D, Carmeliet J (2014b) Molecular mechanism of moisture-induced transition in amorphous cellulose. ACS Macro Lett 3:1037–1040

    Article  CAS  Google Scholar 

  • Kulasinski K, Guyer R, Keten S, Derome D, Carmeliet J (2015a) Impact of moisture adsorption on structure and physical properties of amorphous biopolymers. Macromolecules 48:2793–2800

    Article  CAS  Google Scholar 

  • Kulasinski K, Guyer R, Derome D, Carmeliet J (2015b) Poroelastic model for adsorption-induced deformation of biopolymers obtained from molecular simulations. Phys Rev E 92:022605

    Article  CAS  Google Scholar 

  • Kulasinski K, Guyer R, Derome D, Carmeliet J (2015c) Water adsorption in wood microfibril: role of the crystalline-amorphous cellulose. Biomacromol 16:2972–2978

    Article  CAS  Google Scholar 

  • Kulasinski K, Guyer R, Derome D, Carmeliet J (2015d) Water diffusion in hydrophilic systems: a stop and go process. Langmuir 31:10843–10849

    Article  CAS  PubMed  Google Scholar 

  • Lins RD, Hünenberger PH (2005) A new GROMOS force field for hexopyranose-based carbohydrates. J Comput Chem 26:1400–1412

    Article  CAS  PubMed  Google Scholar 

  • Mihranyan A, Llogostera AP, Karmhag R, Stromme M, Ek R (2004) Moisture sorption by cellulose powders of varying crystallinity. Int J Pharm 269(2):433–442

    Article  CAS  PubMed  Google Scholar 

  • Neuhaus FH (1981) Elastizitätszahlen von Fichtenholz in Abhängigkeit von der Holzfeuchtigkeit. PhD thesis, Ruhr-Universität Bochum, Bochum, Germany

    Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  PubMed  Google Scholar 

  • Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676

    Article  CAS  PubMed  Google Scholar 

  • Patera A (2014) 3D experimental investigation of the hygro-mechanical behaviour of wood at cellular and sub-cellular scales. Diss. ETH no. 22230, ETHZ, Zurich

    Google Scholar 

  • Patera A, Derome D, Griffa M, Carmeliet J (2013) Hysteresis in swelling and in sorption of wood tissue. J Struct Biol 182:226–234

    Article  PubMed  Google Scholar 

  • Petridis L, Schulz R, Smith JC (2011a) Simulation analysis of the temperature dependence of lignin structure and dynamics. J Am Chem Soc 133:20277–20287

    Article  CAS  PubMed  Google Scholar 

  • Petridis L, Pingali SV, Urban V, Heller WT, O’Neill HM, Foston M, Smith JC (2011b) Self-similar multiscale structure of lignin revealed by neutron scattering and molecular dynamics simulation. Phys Rev E 83(6):061911

    Google Scholar 

  • Petridis L, Smith JC (2009) A molecular mechanics force field for lignin. Comp Chem 30:457–467

    Article  CAS  PubMed  Google Scholar 

  • Plimpton S (1995) Fast parallel algorithms for ahort-range molecular dynamics. J Comput Phys 117:1–19

    Article  CAS  Google Scholar 

  • Qing H, Mishnaevsky L (2009) Moisture-related mechanical properties of softwood: 3D micromechanical modeling. Comput Mater Sci 46:310–320

    Article  Google Scholar 

  • Rafsanjani A, Derome D, Carmeliet J (2013a) Micromechanics investigation of hygro-elastic behavior of cellular materials with multi-layered cell walls. Compos Struct 95:607–611

    Article  Google Scholar 

  • Rafsanjani A, Lanvermann Derome D, Niemz P, Carmeliet J (2013b) Multiscale analysis of free swelling of Norway spruce. Compos Part A Appl Sci Manuf 54:70–78

    Article  Google Scholar 

  • Rafsanjani A, Stiefel M, Jefimovs K, Mokso R, Derome D, Carmeliet J (2014) Hygroscopic swelling of latewood cell wall micropillars reveals ultra-structural anisotropy. Interface 11:20140126

    PubMed  PubMed Central  Google Scholar 

  • Rafsanjani A, Derome D, Carmeliet J (2015) Poromechanical modeling of moisture induced swelling anisotropy of cellular tissues of softwoods. RCS Adv 5:3560–3566

    CAS  Google Scholar 

  • Salmén L (2004) Micromechanical understanding of the cell-wall structure. C.R. Biologies 327:873–880

    Article  CAS  PubMed  Google Scholar 

  • Salmén L, Burgert I (2009) Cell wall features with regard to mechanical performance. A review. Cost action E35 2004-2008: wood machining—micromechanics and fracture. Holzforschung 63:121–129

    Article  CAS  Google Scholar 

  • Sangha AK, Petridis L, Smith JC, Ziebell A, Parks JM (2012) Molecular simulation as a tool for studying lignin. Environ Prog Sustain Energy 31(1):47–54

    Article  CAS  Google Scholar 

  • Smith PE, van Gunsteren WF (1994) Consistent dielectric properties of the simple point charge and extended simple point charge water models at 277 and 300 K. J Chem Phys 100:3169–3174

    Article  CAS  Google Scholar 

  • Sun H, Mumby SJ, Maple JR, Hagler AT (1994) An ab Initio CFF93 all-atom force field for polycarbonates. J Am Chem Soc 116:2978–2987

    Article  CAS  Google Scholar 

  • Teleman O, Jönsson B, Engström S (1987) A molecular dynamics simulation of a water model with intramolecular degrees of freedom. Mol Phys 60:193–203

    Article  CAS  Google Scholar 

  • Wagenführ A, Scholz F (2012) Taschenbuch des Holztechnik. Carl Hanser Verlag, Munich

    Book  Google Scholar 

  • Watanabe U, Norimoto M, Morooka T (2000) Cell wall thickness and tangential Young’s modulus in coniferous early wood. J Wood Sci 46:109–114

    Article  Google Scholar 

  • Xu P, Donaldson LA, Gergely ZR, Staehelin LA (2007) Dual-axis electron tomography: a new approach for investigating the spatial organization of wood cellulose microfibrils. Wood Sci Technol 41:101–116

    Article  CAS  Google Scholar 

  • Zwanzig RW (1954) High-temperature equation of state by a perturbation method. I. nonpolar gases. J Chem Phys 22:1420–1426

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Derome .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Derome, D., Kulasinski, K., Zhang, C., Chen, M., Carmeliet, J. (2018). Using Modeling to Understand the Hygromechanical and Hysteretic Behavior of the S2 Cell Wall Layer of Wood. In: Geitmann, A., Gril, J. (eds) Plant Biomechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-79099-2_12

Download citation

Publish with us

Policies and ethics