Skip to main content

Practical Implementation of Ring-SIS/LWE Based Signature and IBE

  • Conference paper
  • First Online:
Post-Quantum Cryptography (PQCrypto 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10786))

Included in the following conference series:

Abstract

Lattice-based signature and Identity-Based Encryption are well-known cryptographic schemes, and having both efficient and provable secure schemes in the standard model is still a challenging task in light of the current NIST post-quantum competition. We address this problem in this paper by mixing standard IBE scheme, à la ABB (EUROCRYPT 2010) on Ring-SIS/LWE assumptions with the efficient trapdoor of Peikert and Micciancio (EUROCRYPT 2012) and we provide an efficient implementation. Our IBE scheme is more efficient than the IBE scheme of Ducas, Lyubashevsky and Prest based on NTRU assumption and is based on more standard assumptions. We also describe and implement the underlying signature scheme, which is provably secure in the standard model and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We got all the codes from the NIST website https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions.

References

  1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28

    Chapter  Google Scholar 

  2. Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of STOC, pp. 99–108. ACM (1996)

    Google Scholar 

  3. Aguilar-Melchor, C., Barrier, J., Guelton, S., Guinet, A., Killijian, M.-O., Lepoint, T.: NFLlib: NTT-based fast lattice library. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 341–356. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29485-8_20

    Chapter  Google Scholar 

  4. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: STACS. Citeseer (2009)

    Google Scholar 

  5. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol. 9, 169–203 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bindel, N., Akleylek, S., Alkim, E., Barreto, P., Buchmann, J., Eaton, E., Gutoski, G., Kramer, J., Longa, P., Polat, H., Ricardini, J., Zanon, G.: qTesla, January 2018

    Google Scholar 

  7. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

  8. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_30

    Chapter  Google Scholar 

  9. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27

    Chapter  Google Scholar 

  10. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_1

    Chapter  Google Scholar 

  11. Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3_32

    Chapter  Google Scholar 

  12. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_3

    Chapter  Google Scholar 

  13. Dai, W., Doröz, Y., Polyakov, Y., Rohloff, K., Sajjadpour, H., Savaş, E., Sunar, B.: Implementation and evaluation of a lattice-based key-policy ABE scheme. Cryptology ePrint Archive, Report 2017/601 (2017)

    Google Scholar 

  14. Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehle, D.: CRYSTALS - dilithium: digital signatures from module lattices. Cryptology ePrint Archive, Report 2017/633 (2017)

    Google Scholar 

  15. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 22–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_2

    Google Scholar 

  16. Ducas, L., Micciancio, D.: Improved short lattice signatures in the standard model. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 335–352. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_19

    Chapter  Google Scholar 

  17. Ducas, L., Prest, T.: Fast fourier orthogonalization. In: ISSAC 2016, pp. 191–198. ACM (2016)

    Google Scholar 

  18. El Bansarkhani, R., Buchmann, J.: Improvement and efficient implementation of a lattice-based signature scheme. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 48–67. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43414-7_3

    Chapter  Google Scholar 

  19. Fouque, P., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T., Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon: fast-Fourier lattice-based compact signatures over NTRU, January 2018

    Google Scholar 

  20. Fouotsa, E.: Calcul des couplages et arithmetique des courbes elliptiques pour la cryptographie. Ph.D. thesis (2013)

    Google Scholar 

  21. Genise, N., Micciancio, D.: Faster Gaussian sampling for trapdoor lattices with arbitrary modulus. In: EUROCRYPT 2018 (2018, in press)

    Google Scholar 

  22. Doruk Gür, K., Polyakov, Y., Rohloff, K., Ryan, G.W., Savaş, E.: Implementation and evaluation of improved Gaussian sampling for lattice trapdoors. Cryptology ePrint Archive, Report 2017/285 (2017)

    Google Scholar 

  23. Gentry, C., Peikert, C., Vaikuntanathan, V.: How to use a short basis: trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of STOC (2008)

    Google Scholar 

  24. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_13

    Chapter  Google Scholar 

  25. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  26. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_3

    Chapter  Google Scholar 

  27. Lyubashevsky, V., Seiler, G.: Partially splitting rings for faster lattice-based zero-knowledge proofs. In: EUROCRYPT 2018 (2018, in press)

    Google Scholar 

  28. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43

    Chapter  Google Scholar 

  29. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions. Comput. Complex. 16(4), 365–411 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  31. McCarthy, S., Smyth, N., O’Sullivan, E.: A practical implementation of identity-based encryption over NTRU lattices. Cryptology ePrint Archive, Report 2017/1049 (2017)

    Google Scholar 

  32. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_8

    Chapter  Google Scholar 

  33. Plantard, T., Sipasseuth, A., Dumondelle, C., Susilo, W.: Diagonal dominant reduction for lattice-based signature, January 2018

    Google Scholar 

  34. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of STOC (2005)

    Google Scholar 

  35. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_5

    Chapter  Google Scholar 

  36. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_4

    Chapter  Google Scholar 

  38. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_36

    Chapter  Google Scholar 

Download references

Acknowledgments

This work has received a French government support managed by the National Research Agency in the “Investing for the Future” program, under the national project RISQ P141580-2660001/DOS0044216, and under the projet TYREX granted by the CominLabs excellence laboratory with reference ANR-10-LABX-07-01. Pauline Bert is funded by the Direction Générale de l’Armement (Pôle de Recherche CYBER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline Bert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bert, P., Fouque, PA., Roux-Langlois, A., Sabt, M. (2018). Practical Implementation of Ring-SIS/LWE Based Signature and IBE. In: Lange, T., Steinwandt, R. (eds) Post-Quantum Cryptography. PQCrypto 2018. Lecture Notes in Computer Science(), vol 10786. Springer, Cham. https://doi.org/10.1007/978-3-319-79063-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-79063-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-79062-6

  • Online ISBN: 978-3-319-79063-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics