Practical Implementation of Ring-SIS/LWE Based Signature and IBE

  • Pauline Bert
  • Pierre-Alain Fouque
  • Adeline Roux-Langlois
  • Mohamed Sabt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10786)


Lattice-based signature and Identity-Based Encryption are well-known cryptographic schemes, and having both efficient and provable secure schemes in the standard model is still a challenging task in light of the current NIST post-quantum competition. We address this problem in this paper by mixing standard IBE scheme, à la ABB (EUROCRYPT 2010) on Ring-SIS/LWE assumptions with the efficient trapdoor of Peikert and Micciancio (EUROCRYPT 2012) and we provide an efficient implementation. Our IBE scheme is more efficient than the IBE scheme of Ducas, Lyubashevsky and Prest based on NTRU assumption and is based on more standard assumptions. We also describe and implement the underlying signature scheme, which is provably secure in the standard model and efficient.


Lattice Signature IBE Software implementation Ring-LWE/SIS 



This work has received a French government support managed by the National Research Agency in the “Investing for the Future” program, under the national project RISQ P141580-2660001/DOS0044216, and under the projet TYREX granted by the CominLabs excellence laboratory with reference ANR-10-LABX-07-01. Pauline Bert is funded by the Direction Générale de l’Armement (Pôle de Recherche CYBER).


  1. [ABB10]
    Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). Scholar
  2. [Ajt96]
    Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of STOC, pp. 99–108. ACM (1996)Google Scholar
  3. [AMBG+16]
    Aguilar-Melchor, C., Barrier, J., Guelton, S., Guinet, A., Killijian, M.-O., Lepoint, T.: NFLlib: NTT-based fast lattice library. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 341–356. Springer, Cham (2016). Scholar
  4. [AP09]
    Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: STACS. Citeseer (2009)Google Scholar
  5. [APS15]
    Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol. 9, 169–203 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. [BAA+18]
    Bindel, N., Akleylek, S., Alkim, E., Barreto, P., Buchmann, J., Eaton, E., Gutoski, G., Kramer, J., Longa, P., Polat, H., Ricardini, J., Zanon, G.: qTesla, January 2018Google Scholar
  7. [BF01]
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). Scholar
  8. [BGG+14]
    Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). Scholar
  9. [CHKP10]
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). Scholar
  10. [CN11]
    Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011). Scholar
  11. [Coc01]
    Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001). Scholar
  12. [DDLL13]
    Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). Scholar
  13. [DDP+17]
    Dai, W., Doröz, Y., Polyakov, Y., Rohloff, K., Sajjadpour, H., Savaş, E., Sunar, B.: Implementation and evaluation of a lattice-based key-policy ABE scheme. Cryptology ePrint Archive, Report 2017/601 (2017)Google Scholar
  14. [DLL+17]
    Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehle, D.: CRYSTALS - dilithium: digital signatures from module lattices. Cryptology ePrint Archive, Report 2017/633 (2017)Google Scholar
  15. [DLP14]
    Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 22–41. Springer, Heidelberg (2014). Scholar
  16. [DM14]
    Ducas, L., Micciancio, D.: Improved short lattice signatures in the standard model. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 335–352. Springer, Heidelberg (2014). Scholar
  17. [DP16]
    Ducas, L., Prest, T.: Fast fourier orthogonalization. In: ISSAC 2016, pp. 191–198. ACM (2016)Google Scholar
  18. [EBB13]
    El Bansarkhani, R., Buchmann, J.: Improvement and efficient implementation of a lattice-based signature scheme. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 48–67. Springer, Heidelberg (2014). Scholar
  19. [FHK+18]
    Fouque, P., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T., Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon: fast-Fourier lattice-based compact signatures over NTRU, January 2018Google Scholar
  20. [Fou13]
    Fouotsa, E.: Calcul des couplages et arithmetique des courbes elliptiques pour la cryptographie. Ph.D. thesis (2013)Google Scholar
  21. [GM18]
    Genise, N., Micciancio, D.: Faster Gaussian sampling for trapdoor lattices with arbitrary modulus. In: EUROCRYPT 2018 (2018, in press)Google Scholar
  22. [GPR+17]
    Doruk Gür, K., Polyakov, Y., Rohloff, K., Ryan, G.W., Savaş, E.: Implementation and evaluation of improved Gaussian sampling for lattice trapdoors. Cryptology ePrint Archive, Report 2017/285 (2017)Google Scholar
  23. [GPV08]
    Gentry, C., Peikert, C., Vaikuntanathan, V.: How to use a short basis: trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of STOC (2008)Google Scholar
  24. [LM06]
    Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006). Scholar
  25. [LPR10]
    Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). Scholar
  26. [LPR13]
    Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 35–54. Springer, Heidelberg (2013). Scholar
  27. [LS18]
    Lyubashevsky, V., Seiler, G.: Partially splitting rings for faster lattice-based zero-knowledge proofs. In: EUROCRYPT 2018 (2018, in press)Google Scholar
  28. [Lyu12]
    Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). Scholar
  29. [Mic07]
    Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions. Comput. Complex. 16(4), 365–411 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  30. [MP12]
    Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). Scholar
  31. [MSO17]
    McCarthy, S., Smyth, N., O’Sullivan, E.: A practical implementation of identity-based encryption over NTRU lattices. Cryptology ePrint Archive, Report 2017/1049 (2017)Google Scholar
  32. [PR06]
    Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006). Scholar
  33. [PSDS18]
    Plantard, T., Sipasseuth, A., Dumondelle, C., Susilo, W.: Diagonal dominant reduction for lattice-based signature, January 2018Google Scholar
  34. [Reg05]
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of STOC (2005)Google Scholar
  35. [Sha85]
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). Scholar
  36. [Sho97]
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  37. [SS11]
    Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47. Springer, Heidelberg (2011). Scholar
  38. [SSTX09]
    Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pauline Bert
    • 1
  • Pierre-Alain Fouque
    • 1
  • Adeline Roux-Langlois
    • 1
  • Mohamed Sabt
    • 1
  1. 1.Univ Rennes, CNRS, IRISARennesFrance

Personalised recommendations