Skip to main content

Smart Mobility Providing Smart Cities

Part of the Sustainability and Innovation book series (SUSTAINABILITY)

Abstract

By 2050, 70% of the world’s population will live in or around a city. Cities already generate 70% of energy-related greenhouse gas emissions. The future of urbanisation will be smart, in which land use is optimised and the transport system is more efficient and environmentally friendly, providing affordable mobility services to ensure well-being in the city.

In a smart city, urban and transport planning should be co-conducted harmoniously in order to create a new transit-supportive city, which is the wider context in which we position our vision of smart mobility. After this we present and analyse the links between the transport system, disruptive innovation, and the role of public policies in change management. In this chapter, we focus on the organisation of the co-conception of smart mobility, in a local territory, defining this as disruptive eco-innovation. The development and diffusion of innovations within the mobility ecosystem significantly disrupt usages and modify market boundaries. Implementation conditions to achieve a widespread adoption of smart mobility are discussed and the role and decision-making methods of territorial actors are considered.

Keywords

  • Smart mobility
  • Smart city
  • Disruptive innovation
  • Eco-innovation
  • Territory
  • Public policy
  • Governance

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-79060-2_7
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-79060-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1

Notes

  1. 1.

    An urban area in France is a group of contiguous municipalities, with no pockets of clear land, constituted by an urban centre (or urban unit) providing more than 10,000 jobs, and by rural municipalities or urban units (urban periphery) in which at least 40% of the employed resident population works in the centre or in the municipalities attracted by it (French national statistics institute INSEE definition).

  2. 2.

    The INSEE typology uses the following travel motives: home to work or studies, purchasing, personal business, accompaniment, leisure or visits.

  3. 3.

    In France, Agendas 21.

  4. 4.

    The number of inter-municipalities on 1 January 2017 was thus 1263 against 2062 previously, i.e. a fall of 39%.

  5. 5.

    “Départements” and “Régions” in France.

  6. 6.

    In 2010, the contribution of users to financing the public transport network in the Paris region was only 29.7%.

  7. 7.

    We adopt the consensual definition of eco-innovation proposed initially by Kemp and Pearson (2007): “Eco-innovation is the production, application or exploitation of a good, service, production process, organizational structure, or management or business method that is novel to the firm or user and which results, throughout its life cycle, in a reduction of environmental risk, pollution and the negative impacts of resource use (including energy use) compared to relevant alternatives”. See Horbach (2016) for an overview of the eco-innovation literature.

  8. 8.

    The company redefines its technologies, goods and services and does not find a new market: for example Amazon, easyJet, etc.

  9. 9.

    Christensen (1997) speaks of the dilemma of the innovator for whom the disruptive innovations are rarely introduced by the dominant companies in the market.

  10. 10.

    In the meaning of Christensen et al. (2002) for whom innovation corresponds to “the creation of totally new markets and economic models” (p. 22).

  11. 11.

    The authors speak of autonomous innovations when they can be carried out independently of each other.

References

  • Albino, V., Berardi, U., & Dangelico, R. M. (2015). Smart cities: Definitions, dimensions, performances and initiatives. Journal of Urban Technology, https://doi.org/10.1080/10630732.2014.942092.

  • Alonso, W. (1964). Location and land use. Toward a general theory of land rent. Cambridge, MA: Harvard University Press.

    CrossRef  Google Scholar 

  • Anastasiadou, M., Dimitriou, D. J., Fredianakis, A., Lagoudakis, E., Traxanatzi, G., & Tsagarakis, K. P. (2009). Determining the parking fee using the contingent valuation methodology. Journal of Urban Planning and Development, 135(3), 116–124.

    CrossRef  Google Scholar 

  • Bajari, P., Fruehwirth, J. C., Kim, K. I., & Timmins, C. (2012). A rational expectations approach to hedonic price regressions with time-varying unobserved product attributes: The price of pollution. The American Economic Review, 102(5), 1898–1926.

    CrossRef  Google Scholar 

  • Baron, M. (2012). Do we need smart cities for resilience? Journal of Economics and Management, 10, 32–46.

    Google Scholar 

  • Ben Leitafa, S. (2015). How to strategize smart cities: Revealing the SMART model. Journal of Business Research, 68(7), 1414–1419.

    CrossRef  Google Scholar 

  • Beria, P., Malteste, I., & Mariotti, I. (2012). Multicriteria versus cost benefit analysis: A comparative perspective in the assessment of sustainable mobility. European Transport Research Review, 4, 137–152.

    CrossRef  Google Scholar 

  • Bristow, A. L., Wardman, M., & Chintakayala, V. P. K. (2015). International meta-analysis of stated preference studies of transportation noise nuisance. Transportation, 42(1), 71–100.

    CrossRef  Google Scholar 

  • Brownstone, D., & Golob, T. F. (2009). The impact of residential density on vehicle usage and energy consumption. Journal of Urban Economics, 65(1), 91–98.

    CrossRef  Google Scholar 

  • Bueno, P. C., Vassallo, J. M., & Cheung, K. (2015). Sustainability assessment of transport infrastructure projects: A review of existing tools and methods. Transport Reviews, 35(5), 622–649.

    CrossRef  Google Scholar 

  • Bureau, B., & Glachant, M. (2010). Évaluation de l’impact des politiques. Economie & prévision, 1, 27–44.

    Google Scholar 

  • Caragliu, A. Del Bo, C., Kourtit, K., & Nijkamp, P. (2015, December). Smart cities in an open world. Pre-print Politecnico di Milano.

    CrossRef  Google Scholar 

  • Caragliu, A., Del Bo, C., & Nijkamp, P. (2011). Smart cities in Europe. Journal of Urban Technology, 18(2), 65–82.

    CrossRef  Google Scholar 

  • Carrillo-Hermosilla, J., del Rio, P., & Könnölä, T. (2010). Diversity of eco-innovations: Reflections from selected case studies. Journal of Cleaner Production, 18, 1073–1083.

    CrossRef  Google Scholar 

  • Cecere, G., Corrocher, N., Gossart, C., & Ozman, M. (2014). Lock-in and path dependence: An evolutionary approach to eco-innovations. Journal of Evolutionary Economics, 24(5), 1037–1065.

    CrossRef  Google Scholar 

  • Chang, J. S. (2010). Estimation of option and non-use values for intercity passenger rail services. Journal of Transport Geography, 18(2), 259–265.

    CrossRef  Google Scholar 

  • Chesbrough, H., & Teece, D. J. (2002, August). When is virtual virtuous? Harvard Business Review.

    Google Scholar 

  • Christensen, C. M. (1997). The innovator’s dilemma: When new technologies cause great firms to fail. Boston, MA: Harvard Business School Press.

    Google Scholar 

  • Christensen, C. M., Johnson, M. W., & Rigby, D. K. (2002). Foundations for growth: How to identify and build disruptive new businesses. Sloan Management Review, 43(3), 22–32.

    Google Scholar 

  • Dantan, S., Bulteau, J., & Nicolaï, I. (2017). Enhancing sustainable mobility through a multimodal platform: Would travelers pay for it? International Journal of Sustainable Development, 20(1/2), 33–55.

    CrossRef  Google Scholar 

  • Dewar, R. D., & Dutton, J. E. (1986). The adoption of radical and incremental innovations: An empirical analysis. Management Science, 32(11), 1422–1433.

    CrossRef  Google Scholar 

  • Deymier, G. (2007). Analyse spatio-temporelle de la capitalisation immobilière des gains d’accessibilité: l’exemple du périphérique Nord de Lyon. Revue d’Économie Régionale & Urbaine, 4, 755.

    CrossRef  Google Scholar 

  • Didier, M., & Prud’homme, R. (2007). Infrastructures de transport, mobilité et croissance. Rapport du Conseil d’Analyse Economique. La Documentation Française.

    Google Scholar 

  • Dirks, S., Gurdgiev, C., & Keeling, M. (2010). Smarter cities for smarter growth: How cities can optimize their systems for the talent-based economy. Somers, NY: IBM Global Business Services.

    Google Scholar 

  • Dosi, G. (1982). Technological paradigms and technological trajectories. A suggested interpretation of the determinants and directions of technical change. Research Policy, 11(3), 147–162.

    CrossRef  Google Scholar 

  • Duncan, M. (2011). The impact of transit-oriented development on housing prices in San Diego, CA. Urban Studies, 48(1), 101–127.

    CrossRef  Google Scholar 

  • Faucheux, S., & Nicolaï, I. (2011). IT for green and green IT: A proposed typology of eco-innovation. Ecological Economics, 70, 2020–2027.

    CrossRef  Google Scholar 

  • Faucheux, S., & Nicolaï, I. (2015). Business models and the diffusion of eco-innovations in the eco-mobility sector. Society and Business Review, 10(3), 203–222.

    CrossRef  Google Scholar 

  • Forum International des Transports. (2011). Améliorer la pratique de l’analyse coûts-bénéfices dans les transports. Document de référence 2011–1.

    Google Scholar 

  • Fujita, M. (1989). Urban economic theory: Land use and city size. Cambridge: Cambridge University Press.

    CrossRef  Google Scholar 

  • Ghisetti, C., Marzucchi, A., & Montresor, S. (2015). The open eco-innovation mode. An empirical investigation of eleven European countries. Research Policy, 44, 1080–1093.

    CrossRef  Google Scholar 

  • Giffinger, R., Fertner, C., Kramar, H., Kalasek, R., Pichler-Milanović, N., & Meijers, E. (2007). Smart cities ranking of European medium-sized cities. Vienna: Centre of Regional Science, Vienna University of Technology.

    Google Scholar 

  • Hancke, G. P., Silva, B. C., & Hancke, G. P., Jr. (2013). The role of advanced sensing in smart cities. Sensors, 13(1), 393–425.

    CrossRef  Google Scholar 

  • Harrison, C., Eckman, B., Hamilton, R., Hartswick, P., Kalagnanam, J., Paraszczak, J., & Williams, P. (2010). Foundations for smarter cities. IBM Journal of Research and Development, 54(4), 1–16.

    CrossRef  Google Scholar 

  • Hellström, T. (2007). Dimensions of environmentally sustainable innovation: The structure of eco-innovation concepts. Sustainable Development, 15(3), 148–159.

    CrossRef  Google Scholar 

  • Henderson, R. M., & Clark, K. B. (1990). Architectural innovation: The reconfiguration of existing product technologies and the failure of established firms. Administrative Science Quarterly, 35, 9–30.

    CrossRef  Google Scholar 

  • Horbach, J. (2016). Empirical determinants of eco-innovation in European countries using the community innovation survey. Environmental Innovation and Societal Transitions, 16, 1–14.

    CrossRef  Google Scholar 

  • Horbach, J., Rammer, C., & Rennings, K. (2012). Determinants of eco-innovations by type of environmental impact—The role of regulatory push/pull,technology push and market pull. Ecological Economics., 78, 112–122.

    CrossRef  Google Scholar 

  • Hüging, H., Glensor, K., & Lah, O. (2014). Need for a holistic assessment of urban mobility measures – Review of existing methods and design of a simplified approach. Transportation Research Procedia, 4, 3–13.

    CrossRef  Google Scholar 

  • Joubert, A. R., Leiman, A., de Klerk, H. M., Katua, S., & Aggenbach, J. C. (1997). Fynbos (fine bush) vegetation and the supply of water: A comparison of multi-criteria decision analysis and cost-benefit analysis. Ecological Economics, 22(2), 123–140.

    CrossRef  Google Scholar 

  • Kemp, R., & Pearson, P. (2007). Final report MEI project about measuring eco-innovation, European Commision FP6, n°044513.

    Google Scholar 

  • Komninos, N., Pallot, M., & Schaffers, H. (2002). Smart cities and the future internet in Europe. Journal of the Knowledge Economy, 4(2), 119–134.

    CrossRef  Google Scholar 

  • Le Boennec, R. (2013). Les mobilités urbaines: quelles interactions entre déplacements durables et ville compacte? Nantes: Doctoral dissertation.

    Google Scholar 

  • Le Boennec, R. (2014). Externalité de pollution versus économies d’agglomération: le péage urbain, un instrument environnemental adapté? Revue d’Économie Régionale & Urbaine, 1, 3–31.

    CrossRef  Google Scholar 

  • Le Boennec, R., Nicolaï, I., & Da Costa, P. (2017, January 24–25). Inciter au changement de comportement dans les pratiques régulières de mobilité: une analyse multi-acteurs multicritères. Conference Paper, ATEC-ITS France.

    Google Scholar 

  • Le Boennec, R., & Sari, F. (2015). Nouvelles centralités, choix modal et politiques de déplacements: le cas nantais. Les Cahiers Scientifiques du Transport, 67, 55–86.

    Google Scholar 

  • Lera-López, F., Faulin, J., & Sánchez, M. (2012). Determinants of the willingness-to-pay for reducing the environmental impacts of road transportation. Transportation Research Part D: Transport and Environment, 17(3), 215–220.

    CrossRef  Google Scholar 

  • Leydesdorff, L., & Deakin, M. (2011). The triple-helix model of smart cities: A neo-evolutionary perspective. Journal of Urban Technology, 18(2), 53–63.

    CrossRef  Google Scholar 

  • Macharis, C., & Bernardini, A. (2015). Reviewing the use of multi-criteria decision analysis for the evaluation of transport projects: Time for a multi-actor approach. Transport Policy, 37, 177–186.

    CrossRef  Google Scholar 

  • Macharis, C., De Witte, A., & Ampe, J. (2009). The multi-actor, multi-criteria analysis methodology (MAMCA) for the evaluation of transport projects: Theory and practice. Journal of Advanced Transportation, 43(2), 183–202.

    CrossRef  Google Scholar 

  • Mackay, M., & Metcalfe, M. (2002). Multiple methods forecasts for discontinuous innovations. Technological Forecasting and Social Change, 69, 221–232.

    CrossRef  Google Scholar 

  • Mahieu, P. A., Crastes, R., Kriström, B., & Riera, P. (2015). Non-market valuation in France. An overview of the research activity: Introduction. Revue d’économie politique, 125(2), 171–196.

    CrossRef  Google Scholar 

  • Markides, C. (2006). Disruptive Innovation: In need of a better theory. Journal of Product Innovation Management, 23, 19–25.

    CrossRef  Google Scholar 

  • Marks, M. (2016, October). People near transit: Improving accessibility and rapid transit coverage in large cities. Report for the Institute for Transportation and Development Policy (ITDP).

    Google Scholar 

  • Marsal-Llacuna, M. L., Colomer-Llinas, J., & Melendez-Frigola, J. (2014). Lessons in urban monitoring taken from sustainable and livable cities to better address the smart cities initiative. Technological Forecasting and Social Change, 90, 611–622.

    CrossRef  Google Scholar 

  • Mayor, K., Lyons, S., Duffy, D., & Richard, S. J. (2012). A hedonic analysis of the value of rail transport in the Greater Dublin Area. Journal of Transport Economics and Policy, 46(2), 239–261.

    Google Scholar 

  • Meunier, V., & Marsden, É. (2009). Analyse coût-bénéfices: guide méthodologique. FonCSI.

    Google Scholar 

  • Nemet, G. (2009). Demand-pull, technology-push, and government-led incentives for non-incremental technical change. Research Policy, 38(5), 700–709.

    CrossRef  Google Scholar 

  • Pillot, J. (2011). Vers une mobilité décarbonée: quels écosystèmes d’affaire, quels positionnements stratégiques? Rapport Institut Transition Energétique VEDECOM.

    Google Scholar 

  • Pouyanne, G. (2005). L’interaction entre usage du sol et comportements de mobilité. Méthodologie et application a l’aire urbaine de Bordeaux. Revue d’Économie Régionale & Urbaine, 5, 723.

    CrossRef  Google Scholar 

  • Quinet, E. (2010). La pratique de l’analyse coût-bénéfice dans les transports: le cas de la France. OECD/ ITF Joint Transport Research Center Discussion Paper, n° 2010–2017.

    Google Scholar 

  • Rennings, K. (2000). Redefining innovation – Eco-innovation research and the contribution from ecological economics. Ecological Economics, 32, 319–332.

    CrossRef  Google Scholar 

  • Repko, J. (2012). Smart cities literature review and analysis smart cities (pp. 1–18). Washington, DC: IMT 598 Emerging Trends in Information Technologies, University of Washington.

    Google Scholar 

  • Rifkin, J. (2011). The third industrial revolution: How lateral power is transforming energy, the economy, and the world. New York: Palgrave Macmillan.

    Google Scholar 

  • Rosen, S. (1974). Hedonic prices and implicit markets: Product differentiation in pure competition. Journal of Political Economy, 82(1), 34–55.

    CrossRef  Google Scholar 

  • Rousval, B., & Bouyssou, D. (2009). De l’aide multicritère à la décision à l’aide multicritère à l’évaluation.

    Google Scholar 

  • Tudela, A., Akiki, N., & Cisternas, R. (2006). Comparing the output of cost benefit and multi-criteria analysis: An application to urban transport investments. Transportation Research, Part A: Policy and Practice, 40(5), 414–423.

    Google Scholar 

  • Twigg, J. (2009). Characteristics of a disaster resilient community. London: Department for International Development.

    Google Scholar 

  • Utterback, J. M. (1994). Mastering the dynamics of innovation. Boston: Harvard University Business School Press.

    Google Scholar 

  • Utterback, J. M., & Abernathy, W. J. (1975). A dynamic model of product and process innovation. Omega, 3(6), 639–656.

    CrossRef  Google Scholar 

  • Verhoef, E. (1996). The economics of regulating road transport. Cheltenham: Edward Elgar Publishing.

    Google Scholar 

  • Worku, G. B. (2013). Demand for improved public transport services in the UAE: A contingent valuation study in Dubai. International Journal of Business and Management, 8(10), 108.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Nicolaï .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Nicolaï, I., Le Boennec, R. (2018). Smart Mobility Providing Smart Cities. In: da Costa, P., Attias, D. (eds) Towards a Sustainable Economy . Sustainability and Innovation. Springer, Cham. https://doi.org/10.1007/978-3-319-79060-2_7

Download citation