Advertisement

Dynamic Model of a Bio-Inspired Robot for Piping Inspection

  • Damien ChablatEmail author
  • Swaminath Venkateswaran
  • Frédéric Boyer
Conference paper
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 584)

Abstract

Piping inspection robots are of great importance in industries such as nuclear, sewage and chemical where the internal diameters of the pipeline are significantly smaller. Mechanisms having closed loops can be used in such areas as they generate contact forces and deployable structures. With the help of a bio-inspired mechanism, a piping inspection robot is presented which mimics the motion of a caterpillar. The robot is composed of three modules: a central module for elongation and two other modules on the front and rear for clamping. A slot-slider mechanism is chosen for the legs of the robot. Using industrial components such as DC motors, servo-controllers, ball screws and fasteners, the entire robotic system was realized in CATIA software and a prototype was made at the Laboratoire des Sciences du Numérique de Nantes (LS2N). In this article, we present the forces induced on the motors under locomotion using a dynamic analysis. With the help of the recursive Newton-Euler algorithm, the torques generated on the motor under locomotion have been identified which ensures the stability of the system while moving inside pipes.

Keywords

Piping inspection robot Bio-inspired mechanism Dynamic analysis Newton-Euler algorithm 

References

  1. 1.
    Kassim, I., Phee, L., Ng, W.S., Gong, F., Dario, P., Mosse, C.A.: Locomotion techniques for robotic colonoscopy. Eng. Med. Biol. Mag. 25(3), 49–56 (2006)CrossRefGoogle Scholar
  2. 2.
    Henry, R., Chablat, D., Porez, M., Boyer, F., Kanaan, D.: MultiObjective design optimization of the leg mechanism for a piping inspection robot. In: Proceedings of the ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Buffalo, United States (2014)Google Scholar
  3. 3.
    Anthierens, C., Ciftci, A., Betemps, M.: Design of an electro pneumatic micro robot for in-pipe inspection. In: International Symposium on Industrial Electronics, Bled, pp. 968–972 (1999)Google Scholar
  4. 4.
    Anthierens, C., Libersa, C., Touaibia, M., Betemps, M., Arsicault, M., Chaillet, N.: Micro robots dedicated to small diameter canalization exploration. In: International Conference on Intelligent Robots and Systems, Takamatsu, pp. 480-485 (2000)Google Scholar
  5. 5.
    Ur-Rehman, R., Caro, S., Chablat, D., Wenger, P.: Multiobjective path placement optimization of parallel kinematics machines based on energy consumption, shaking forces and maximum actuators torques: application to the orthoglide. Mech. Mach. Theory 45(8), 1125–1141 (2010)CrossRefGoogle Scholar
  6. 6.
    Maxon motor’s, Program 2017/18. High precision Drives and Systems. Information, pp. 363–427 (2017). http://epaper.maxonmotor.com/#1
  7. 7.
    Khalil, W.: Dynamic modeling of robots using recursive Newton-Euler techniques. In: 7th International Conference on Informatics in Control, Automation and Robotics, Portugal (2010)Google Scholar
  8. 8.
    Khalil, W., Kleinfinger, J.F.: A new geometric notation for open and closed-loop robots. In: Proceedings of IEEE International Conference on Robotics and Automation, San Francisco, pp. 1174–1180 (1986)Google Scholar
  9. 9.
    Boyer, F., Ali, S.: Recursive inverse dynamics of mobile multibody systems with joints and wheels. IEEE Trans. Robot. 27(2), 215–228 (2011)CrossRefGoogle Scholar
  10. 10.
    Khalil, W., Dombre, E.: Modeling, Identification and Control of Robots. Hermes Penton Ltd. (2002)CrossRefGoogle Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2019

Authors and Affiliations

  • Damien Chablat
    • 1
    Email author
  • Swaminath Venkateswaran
    • 2
  • Frédéric Boyer
    • 3
  1. 1.CNRS, Laboratoire des Sciences du Numérique de Nantes, UMR CNRS 6004NantesFrance
  2. 2.Ecole Centrale de Nantes, Laboratoire des Sciences du Numérique de Nantes, UMR CNRS 6004NantesFrance
  3. 3.IMT Atlantique, Laboratoire des Sciences du Numérique de Nantes, UMR CNRS 6004NantesFrance

Personalised recommendations