Study of the Walking Efficiency of a Human with a Cane

  • Victor De Leon Gomez
  • Chiara Barone
  • Yannick AoustinEmail author
  • Christine Chevallereau
Conference paper
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 584)


This paper proposes a mathematical model of the walking with canes for an anthropomorphic biped with two identical legs with massless feet, two identical arms, and a torso. The walking is performed in the sagittal plane. The period of the walking gait is the stride that is composed of single support (SS) phase on the first leg, an instantaneous double support (DS) phase, a SS phase on the other leg and another instantaneous DS phase. The stride is the period of this cyclic walking, because the motion of coupled arms is synchronized on this stride. The cane is considered massless. Thus, in order to compare the walking with and without massless cane, the same dynamic model is considered. Numerical tests show that the magnitude of the ground reaction in the stance foot is less with a massless-cane assistance than without one. Especially, the results prove that it is better to use canes with a handle that allows to apply on it a force and a moment by the user. These results highlight the importance of handles in the designing process of the canes. This theoretical study may benefit the design of new canes to overcome a disability on the lower limbs with further researches.


Walking gait Assistive device Biped Energy consumption Torque distribution 


  1. 1.
    Agrawal, A., Harib, O., Hereid, A., Finet, S., Masselin, M., Praly, L., Ames, A.D., Sreenath, K., Grizzle, J.W.: First steps towards translating HZD control of bipedal robots to decentralized control of exoskeletons. IEEEAccess (2017).
  2. 2.
    Beletskii, V.V., Chudinov, P.S.: Parametric optimization in the problem of bipedal locomotion. Izv. An SSSR. Mekhanika Tverdogo Tela [Mechanics of Solids] 12(1), 25–35 (1977)Google Scholar
  3. 3.
    Chevallereau, C., Aoustin, Y.: Optimal reference trajectories for walking and running of a biped. Robotica 19(5), 557–569 (2001)CrossRefGoogle Scholar
  4. 4.
    Chevallereau, C., Bessonnet, G., Abba, G., Aoustin, Y.: Bipedal Robots: Modeling, Design and Building Walking Robots. ISTE and Wiley Editions, New-York (2009)CrossRefGoogle Scholar
  5. 5.
    De-Leon-Gomez, V., Santibanez, V., Moreno-Valenzuela, J.: A procedure to find equivalences among dynamics models of planar biped robots. Simul. Model. Pract. Theory 75, 48–66 (2017)CrossRefGoogle Scholar
  6. 6.
    Di, P., Hasegawa, Y., Nakagawa, S., Sekiyama, K., Fukuda, T., Huang, J., Huang, Q.: Fall detection and prevention control using walking-aid cane robot. IEEE/ASME Trans. Mechatron. 21(2), 625–637 (2016)CrossRefGoogle Scholar
  7. 7.
    Di, P., Sekiyama, K., Huang, J., Nakagawa, S., Chein, F., Fukuda, T.: A real time posture control for stability improvement of intelligent cane robot. In: Proceedings of International Symposium of IEEE Micro-NanoMechatronics and Human Science (MHS), Nagoya, Japan, pp. 346–351 (2012)Google Scholar
  8. 8.
    Formalskii, A.M.: Locomotion of Anthropomorphic Mechanisms, Nauka, Moscow, Russia (1982). (in Russian)Google Scholar
  9. 9.
    Ivanov, A., Formal’skii, A.: Mathematical modeling of crutch walking. J. Comput. Syst. Sci. Int. 54(2), 315–329 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Le, F., Wu, X., Yu, S., Zhang, B., Xu, Y.: A humanoid mini-walking robot with a stick. In: Proceedings of International Conference of IEEE Information and Automation, Zhuhai/Macau, China, pp. 22–25 (2009)Google Scholar
  11. 11.
    Mekki, P., Borghetti, M., Sardini, E., Sepelloni, M.: Wireless instrumented cane for walking monitoring in Parkinson patients. In: Proceedings of International Symposium of IEEE on Medical Measruements and Applications (MeMeA), Roschester, MN, USA, pp. 414–419 (2017)Google Scholar
  12. 12.
    Shimizu, H., Wakazuki, Y., Pan, Y., Furuta, K.: Biped walking robot using a stick on uneven ground. In: Proceedings of International Conference of IEEE SICE Annual Conference, Takamatsu, Japan, pp. 83–88 (2007)Google Scholar
  13. 13.
    Wade, J., Beccani, M., Myszka, A., Bekele, E., Valdastri, P., Flemming, P., de Riesthal, M., Withrow, T., Sarkar, N.: Design and implementation of an instrumented cane for gait recognition. In: Proceedings of International Conference of IEEE on Robotics and Automation, Seattle, USA, pp. 5904–5909 (2015)Google Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2019

Authors and Affiliations

  • Victor De Leon Gomez
    • 1
  • Chiara Barone
    • 1
  • Yannick Aoustin
    • 1
    Email author
  • Christine Chevallereau
    • 1
  1. 1.Laboratoire des Sciences du Numérique de Nantes, UMR CNRS 6004, École Centrale de Nantes, Université de NantesNantesFrance

Personalised recommendations