Advertisement

Improving Surface Roughness in Robotic Grinding Process

  • Mohamed Didi ChaouiEmail author
  • François Léonard
  • Gabriel Abba
Conference paper
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 584)

Abstract

This paper presents an attempt to robotize the grinding process and to overcome grinding vibrations and chattering. The objective is to have a finished workpiece with a high quality of the final surface. In order to achieve that, we started by choosing the right strategy to grind the workpiece that has uneven initial surface. Then, a well-known model of the process is used in order to simulate the grinding of a metallic workpiece. The robot is supposed rigid and does not contribute in the flexibility of the system. The only flexibility that was taken into consideration is that of a pneumatic actuator used to control and reduce vibrations. Its dynamic behavior is approximated using a second degree transfer function.

Keywords

Robotic Grinding Vibration Roughness Modelling 

Notes

Acknowledgement

We would like to thank the Robotix Academy, contract number N°002-4-09-001 for funding this work as a part of the project funded by INTERREG V-A Grande Région program.

References

  1. 1.
    Abele, E., Bauer, J., Pischan, M., Stryk, O.V., Friedmann, M., Hemker, T.: Prediction of the tool displacement for robot milling applications using co-simulation of an industrial robot and a removal process. In: CIRP 2nd International Conference on Process Machine Interactions (2010)Google Scholar
  2. 2.
    Alici, G., Shirinzadeh, B.: Enhanced stiffness modeling identification and characterization for robot manipulators. IEEE 21(4), 554–561 (2005)zbMATHGoogle Scholar
  3. 3.
    Chang, H.C., Wang, J.J.: A new model for grinding force prediction and analysis. Int. J. Mach. Tools Manuf. 48, 1335–1344 (2008)CrossRefGoogle Scholar
  4. 4.
    Dumas, C.: Développement de méthodes robotisées pour le parachèvement de pièces métalliques et composites. thèse, Université de Nantes (2011)Google Scholar
  5. 5.
    Dumas, C., Caro, S., Garnier, S., Furet, B.: Joint stiffness identification of six revolute industrial serial. In: Conference Papers of Flexible Automation and Intelligent Manufacturing-Intelligent manufacturing and services, vol. 27, pp. 881–888 (2011)Google Scholar
  6. 6.
    Durgumahanti, P.U., Singh, V., Rao, P.: A new model for grinding force prediction and analysis. Int. J. Mach. Tools Manuf 50(3), 231–240 (2010)CrossRefGoogle Scholar
  7. 7.
    Hahn, R.S., Lindsay, R.P.: Principles of grinding - part I: basic relationships in precision grinding and pan II: the metal removal parameter. Machinery (1971)Google Scholar
  8. 8.
    Palomares, E.: Dynamic behavior of pneumatic linear actuators. Mechatronics 45, 37–48 (2017)CrossRefGoogle Scholar
  9. 9.
    Preumont, A.: Vibration Control of Active Structures: An Introduction, 3rd edn. Université Libre de Bruxelles (2011)CrossRefGoogle Scholar
  10. 10.
    Qin, J.: Commande hybride position/force robuste d’un robot manipulateur utilisé en usinage et/ou en soudage. Arts et Métiers, Thèse (2013)Google Scholar
  11. 11.
    Ciurana, J., Quintana, G.: Chatter in machining processes: a review. Int. J. Mach. Tools Manuf. 51, 363–376 (2011)CrossRefGoogle Scholar
  12. 12.
    Salonitis, K.: Empirical estimation of grinding specific forces and energy based on a modified Werner grinding model. Procedia CIRP 8, 287–292 (2013)CrossRefGoogle Scholar
  13. 13.
    Vafaeesefat, A.: Optimum creep feed grinding process conditions for rene 80 supper alloy using neural network. Int. J. Precis. Eng. Manuf. 10(3), 5–11 (2009)CrossRefGoogle Scholar
  14. 14.
    Vieler, H., Karim, A., Lechler, A.: Drive based damping for robots with secondary encoders. Robot. Comput. Integr. Manuf. 47, 117–122 (2017)CrossRefGoogle Scholar
  15. 15.
    Wegener, K.: Recent developments in grinding machines. CIRP Ann. Manuf. Technol. 66, 779–802 (2017)CrossRefGoogle Scholar
  16. 16.
    Werner, G.: Influence of work material on grinding forces. Ann. CIRP 27, 243–248 (1978)Google Scholar
  17. 17.
    Zhang, H.: Chatter analysis of robotic machining process. J. Mater. Process. Technol. 173, 301–309 (2006)CrossRefGoogle Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2019

Authors and Affiliations

  • Mohamed Didi Chaoui
    • 1
    Email author
  • François Léonard
    • 1
  • Gabriel Abba
    • 1
  1. 1.Université de Lorraine, Arts et Métiers ParisTech, LCFCMetzFrance

Personalised recommendations