Advertisement

Parallelisms Between Planar and Spatial Tricept-Like Parallel Robots

  • Adrián Peidró
  • José M. Marín
  • Óscar Reinoso
  • Luis Payá
  • Arturo Gil
Conference paper
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 584)

Abstract

This paper analyzes some parallelisms between 3UPS-PU Tricept-like parallel robots and their planar version, 2RPR-PR manipulators, in terms of forward kinematics and singularities. We show that, like 2RPR-PR manipulators, all 3UPS-PU robots with flat mobile platform have special singularities for which the mobile and fixed platforms are coplanar. These special singularities turn out to be eightfold solutions of the forward kinematics, their perturbations result in double deltoids and, unlike in 2RPR-PR manipulators, encircling them does not produce nonsingular transitions.

Keywords

Parallel robot Singularity Forward kinematics Cusp 

Notes

Acknowledgments

This work was supported by the Spanish Ministry of Education, Culture, and Sport (grant No. FPU13/00413) and the Spanish Ministry of Economy, Industry, and Competitiveness (project No. DPI 2016-78361-R).

References

  1. 1.
    Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solving Polynomial Systems with Bertini. SIAM, Philadelphia (2013)MATHGoogle Scholar
  2. 2.
    Caccavale, F., Siciliano, B., Villani, L.: The tricept robot: dynamics and impedance control. IEEE/ASME Trans. Mechatron. 8(2), 263–268 (2003)CrossRefGoogle Scholar
  3. 3.
    Coste, M., Chablat, D., Wenger, P.: Perturbation of symmetric 3-RPR manipulators and asymptotic singularities. In: Viadero, F., Ceccarelli, M. (eds.) New Trends in Mechanism and Machine Science, pp. 23–31. Springer, Dordrecht (2013)Google Scholar
  4. 4.
    Coste, M., Wenger, P., Chablat, D.: Hidden cusps. In: Lenarčič, J., Merlet, J.-P. (eds.) Advances in Robot Kinematics 2016, pp. 129–138. Springer International Publishing, Cham (2018)Google Scholar
  5. 5.
    Fattah, A., Kasaei, G.: Kinematics and dynamics of a parallel manipulator with a new architecture. Robotica 18(5), 535–543 (2000)CrossRefGoogle Scholar
  6. 6.
    Hosseini, M.A., Daniali, H.-R.M.: Kinematic analysis of tricept parallel manipulator. IIUM Eng. J. 12(5), 7–16 (2011)Google Scholar
  7. 7.
    Hu, B.: Complete kinematics of a serial-parallel manipulator formed by two tricept parallel manipulators connected in serials. Nonlinear Dyn. 78(4), 2685–2698 (2014)CrossRefGoogle Scholar
  8. 8.
    Huang, T., Li, M., Zhao, X.M., Mei, J.P., Chetwynd, D.G., Hu, S.J.: Conceptual design and dimensional synthesis for a 3-DOF module of the trivariant-a novel 5-dof reconfigurable hybrid robot. IEEE Trans. Robot. 21(3), 449–456 (2005)CrossRefGoogle Scholar
  9. 9.
    Innocenti, C., Wenger, P.: Position analysis of the RRP-3 (SS) multi-loop spatial structure. J. Mech. Des. 128(1), 272–278 (2006)CrossRefGoogle Scholar
  10. 10.
    Joshi, S., Tsai, L.-W.: A comparison study of two 3-DOF parallel manipulators: one with three and the other with four supporting legs. IEEE Trans. Robot. Autom. 19(2), 200–209 (2003)CrossRefGoogle Scholar
  11. 11.
    Joshi, S.A., Tsai, L.-W.: The kinematics of a class of 3-DOF, 4-legged parallel manipulators. J. Mech. Des. 125(1), 52–60 (2003)CrossRefGoogle Scholar
  12. 12.
    Kolláth, L., Kureková, E., Ploskuňáková, L., Beniak, J.: Non-conventional production machines, pp. 69–75. Scientific Proceedings. SjF, STU Bratislava (2009)Google Scholar
  13. 13.
    Kong, X., Gosselin, C.M.: Generation and forward displacement analysis of R PR-PR-R PR analytic planar parallel manipulators. J. Mech. Des. 124(2), 294–300 (2002)CrossRefGoogle Scholar
  14. 14.
    Liu, C.H., Hsu, F.-K.: Direct singular positions of the parallel manipulator tricept. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 221(1), 109–117 (2007)CrossRefGoogle Scholar
  15. 15.
    Lu, Y., Hu, B., Liu, P.: Kinematics and dynamics analyses of a parallel manipulator with three active legs and one passive leg by a virtual serial mechanism. Multibody Syst. Dyn. 17(4), 229–241 (2007)CrossRefGoogle Scholar
  16. 16.
    Neumann, K.E.: Robot, US4732525A (1988)Google Scholar
  17. 17.
    Peidró, A., Marín, J.M., Gil, A., Reinoso, O.: Performing nonsingular transitions between assembly modes in analytic parallel manipulators by enclosing quadruple solutions. J. Mech. Des. 137(12), 122302 (2015)CrossRefGoogle Scholar
  18. 18.
    Pendar, H., Roozbehani, H., Sadeghian, H., Zohoor, H.: Singularity analysis of a 3DOF parallel manipulator using infinite constraint plane method. J. Intell. Robot. Syst. 53(1), 21–34 (2008)CrossRefGoogle Scholar
  19. 19.
    Siciliano, B.: The tricept robot: inverse kinematics, manipulability analysis and closed-loop direct kinematics algorithm. Robotica 17(4), 437–445 (1999)CrossRefGoogle Scholar
  20. 20.
    Urízar, M., Petuya, V., Altuzarra, O., Hernández, A.: Assembly mode changing in the cuspidal analytic 3-RPR. IEEE Trans. Robot. 28(2), 506–513 (2012)CrossRefGoogle Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2019

Authors and Affiliations

  • Adrián Peidró
    • 1
  • José M. Marín
    • 1
  • Óscar Reinoso
    • 1
  • Luis Payá
    • 1
  • Arturo Gil
    • 1
  1. 1.Miguel Hernández UniversityElcheSpain

Personalised recommendations