Torsional Stability of a U-Joint Based Parallel Wrist Mechanism Featuring Infinite Torsion

  • Guanglei WuEmail author
  • Stéphane Caro
Conference paper
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 584)


In this paper, the dynamic stability problem of a parallel wrist mechanism is studied by means of monodromy matrix method. This manipulator adopts a universal joint as the ball-socket mechanism to support the mobile platform and to transmit the motion/torque between the input shaft and the end-effector. The linearized equations of motion of the mechanical system are established to analyze its stability according to the Floquet theory. The unstable regions are presented graphically in various parametric charts.


Dynamic stability Parallel wrist mechanism Monodromy matrix Floquet theory Torsional vibrations 



The reported work is supported by the Doctoral Start-up Foundation of Liaoning Province (No. 20170520134) and the Fundamental Research Funds for the Central Universities (No. DUT16RC(3)068).


  1. 1.
    Asada, H., Granito, J.: Kinematic and static characterization of wrist joints and their optimal design. In: IEEE International Conference on Robotics and Automation, pp. 244–250 (1985)Google Scholar
  2. 2.
    Asokanthan, S.F., Hwang, M.C.: Torsional instabilities in a system incorporating a Hooke’s joint. J. Vib. Acoust. 118(3), 368–374 (1996)CrossRefGoogle Scholar
  3. 3.
    Bulut, G., Parlar, Z.: Dynamic stability of a shaft system connected through a Hooke’s joint. Mech. Mach. Theory 46(11), 1689–1695 (2011)CrossRefGoogle Scholar
  4. 4.
    Chang, S.I.: Torsional instabilities and non-linear oscillation of a system incorporating a Hooke’s joint. J. Sound Vib. 229(4), 993–1002 (2000)CrossRefGoogle Scholar
  5. 5.
    Chicone, C.: Ordinary Differential Equations with Applications. Springer, New York (2006)zbMATHGoogle Scholar
  6. 6.
    Desmidt, H.A., Wang, K.W., Smith, E.C.: Coupled torsion-lateral stability of a shaft-disk system driven through a universal joint. ASME J. Appl. Mech. 69(3), 261–273 (2002)CrossRefGoogle Scholar
  7. 7.
    Éidinov, M.S., Nyrko, V.A., Éidinov, R.M., Gashukov, V.S.: Torsional vibrations of a system with Hooke’s joint. Sov. Appl. Mech. 12(3), 291–298 (1976)CrossRefGoogle Scholar
  8. 8.
    Floquet, G.: Sur les équations différentielles linéaires à coefficients périodiques. Annales de l’École Normale Supérieure 12, 47–88 (1883)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gosselin, C.M., Hamel, J.F.: The Agile Eye: a high-performance three-degree-of-freedom camera-orienting device. In: IEEE International Conference on Robotics and Automation, pp. 781–786 (1994)Google Scholar
  10. 10.
    H. Ota, M.K., Sugita., H.: Lateral vibrations of a rotating shaft driven by a universal joint: 1st report, generation of even multiple vibrations by secondary moment. Bull. JSME 27(231), 2002–2007 (1984)CrossRefGoogle Scholar
  11. 11.
    Kotera, T.: Instability of torsional vibrations of a system with a cardan joint, vol. 26, pp. 19–30. Memoirs of the Faculty of Engineering Kobe University (1980)Google Scholar
  12. 12.
    Li, T., Payandeh, S.: Design of spherical parallel mechanisms for application to laparoscopic surgery. Robotica 20(2), 133–138 (2002)CrossRefGoogle Scholar
  13. 13.
    Porter, B.: A theoretical analysis of the torsional oscillation of a system incorporating a Hooke’s joint. ARCHIVE J. Mech. Eng. Sci. 3(4), 324–329 (1961)CrossRefGoogle Scholar
  14. 14.
    Porter, B., Gregory, R.W.: Non-linear torsional oscillation of a system incorporating a Hooke’s joint. ARCHIVE J. Mech. Eng. Sci. 5(2), 191–209 (1963)CrossRefGoogle Scholar
  15. 15.
    Saigo, M., Okada, Y., Ono, K.: Self-excited vibration caused by internal friction in universal joints and its stabilizing method. J. Vib. Acoust. 119(2), 221–229 (1997)CrossRefGoogle Scholar
  16. 16.
    Szymkiewicz, R.: Numerical Solution of Ordinary Differential Equations. Academic Press, New York (1971)Google Scholar
  17. 17.
    Wu, G., Bai, S., Kepler, J.: Mobile platform center shift in spherical parallel manipulators with flexible limbs. Mech. Mach. Theory 75, 12–26 (2014)CrossRefGoogle Scholar
  18. 18.
    Wu, G., Caro, S., Bai, S., Kepler, J.: Dynamic modeling and design optimization of a 3- DOF spherical parallel manipulator. Robot. Auto. Syst. 62, 1377–1386 (2014)CrossRefGoogle Scholar
  19. 19.
    Wu, G., Caro, S., Wang, J.: Design and transmission analysis of an asymmetrical spherical parallel manipulator. Mech. Mach. Theory 94, 119–131 (2015)CrossRefGoogle Scholar
  20. 20.
    Zeman, V.: Dynamik der drehsysteme mit kardagelenken. Mech. Mach. Theory 13, 107–118 (1978)CrossRefGoogle Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringDalian University of TechnologyDalianChina
  2. 2.CNRS, Laboratoire des Sciences du Numérique de Nantes, UMR CNRS 6004, Ecole Centrale de NantesNantesFrance

Personalised recommendations