Comparison of Recent Code Provisions for Punching Shear Capacity of R/C Slabs Without Shear Reinforcement

  • M. Lapi
  • M. Orlando
  • F. Angotti
  • P. Spinelli
Conference paper
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 10)


In the last years the knowledge of the punching failure in R/C slabs increased thanks to several scientific studies. The progress obtained in this field is considerable, nevertheless achieved results are only taken into consideration by few Codes. The most updated code is the Model Code 2010, which adopted the Critical Shear Crack Theory (CSCT) for the punching shear capacity of R/C slab-column connections. At the same time, the EC2 formulation for punching is under revision, but the new formulation will not be available before three-four years. In this paper, the authors discuss main code provisions (ACI, current EC2, two proposals for revision of EC2, MC 2010, old Italian Recommendations) for punching shear capacity of R/C flat slabs without shear reinforcement. Through a parametric analysis, the authors investigate how each code takes into account the influence of main variables, which come into play in the punching phenomenon, on the evaluation of the punching capacity. Finally, results of each code formulation are compared with different literature experimental data.


Punching failure Flat-slab CSCT EC2 revision 


  1. Fédération Internationale du Béton (fib) (2012) Model Code 2010 - Final draft, Vol. 1-2, fédération internationale du béton, Bulletin 65, Lausanne, SwitzerlandGoogle Scholar
  2. Muttoni A (2008) Punching shear strength of reinforced concrete slabs without transverse reinforcement. ACI Struct J 105(4):440–450Google Scholar
  3. ACI Committee 318 (2014) Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary. American Concrete Institute, Farmington Hills, MIGoogle Scholar
  4. CEN (2004) Eurocode 2: design of concrete structures. Part 1-1: general rules and rules for buildings. EN 1992-1-1, December 2004Google Scholar
  5. Hegger J, Siburg C, Kueres D (2016) Proposal for punching shear design based on Eurocode 2. Institute of Structural Concrete RWTH Aachen University, Germany, 22 January 2016Google Scholar
  6. Muttoni A, Fernández Ruiz M, Simões J, Cavagnis F (2016) Background document to provisions for Shear and Punching Shear Design – Closed Form solutions based on Model Code 2010 and Critical Shear Crack Theory. IBETON École Polytechnique Féderale de Lausanne, Lausanne, 3 June 2016Google Scholar
  7. DM96 - Decreto 9 gennaio 1996 (1996) Norme tecniche per il calcolo, l’esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresse per le strutture metalliche. Ministero dei Lavori Pubblici, Roma (in Italian)Google Scholar
  8. SIA (2003) Code 262 for Concrete Structures, Swiss Society of Engineers and Architects, Zürich, 94 pGoogle Scholar
  9. Banthia N, Al-Asaly M, Ma S (1995) Behavior of concrete slabs reinforced with fiber-reinforced plastic grid. ASCE J Mater Civil Eng 7(4):252–257CrossRefGoogle Scholar
  10. Broms CK (1990) Punching of flat plates – a question of concrete proprieties in biaxial compression and size effect. ACI Struct J 87(3):292–304Google Scholar
  11. Criswell ME (1974) Static and dynamic response of reinforced concrete slab-column connections. ACI Spec Pubbl 42:721–746Google Scholar
  12. Elstner RC, Hognestad E (1956) Shearing strength of reinforced concrete slabs. ACI J Am Concr Inst 28(53-2):29–58, July 1956Google Scholar
  13. Etter S, Heinzmann D, Jaeger T, Marti P (2009) Versuche zum Durchstanzverhalten von Stahlbetonplatten (Tests on the Punching Behavior of Reinforced Concrete Slabs). Report No. 324, Institute of Structural Engineering (IBK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, 64 p (in German) Google Scholar
  14. Forssell C, Holmberg Å (1946) Stämpellast på Plattor av Betong. Betong (Stockholm) 31(2):95–123 (in Swedish)Google Scholar
  15. Graf O (1938) Versuche über die Widerstandsfähigkeit von allseitig aufliegenden dicken Eisenbetonplatten unter Einzellasten. Deutscher Ausschuß für Eisenbeton, Heft 88 (in German)Google Scholar
  16. Ghannoum CM (1998) Effect of high strength concrete on the performance of slab-column specimens. Master Degree thesis, Department of Civil Engineering and Applied Mechanics, McGill University, Montréal, CanadaGoogle Scholar
  17. Guandalini S (2005) Poinçonnement symétrique des dalles en béton armé. PhD thesis, École Polytechnique Fédérale de Lausanne, Lausanne, SwitzerlandGoogle Scholar
  18. Lee JH, Yoon YS, Cook WD, Mitchell D (2009) Improving punching shear behavior of glass fiber-reinforced polymer reinforced slabs. ACI Struct J 106(4):427–434Google Scholar
  19. Li K (2000) Influence of size on punching shear strength of concrete slabs. Master Degree thesis, Department of Civil Engineering and Applied Mechanics, McGill University, Montréal, CanadaGoogle Scholar
  20. Lips S, Fernández Ruiz M, Muttoni A (2012) Experimental investigation on punching strength and deformation capacity of shear-reinforced slabs. ACI Struct J 109:889–900Google Scholar
  21. Long AE, Masterson DM (1974) Improved experimental procedure for determining the punching strength of reinforced concrete flat slab structures. ACI Spec Publ 42:921–938Google Scholar
  22. Manterola M (1966) Poinçonnement de dalles sans armature d’effort tranchant. In: Comité Européen du Béton (Hrsg.): Dalles, Structures planes, CEB-Bull. d’Information No. 58, Paris (in French)Google Scholar
  23. Marzouk H, Jiang D (1997) Experimental investigation on shear enhancement types for high-strength concrete plates. ACI Struct J 94(1):49–58 Google Scholar
  24. Marzouk H, Hussein A (1991) Experimental investigation on the behavior of high-strength concrete slabs. ACI Struct J 88(6):701–713Google Scholar
  25. Matthys S, Taerwe L (2000) Concrete slabs reinforced with FRP grids II: punching resistance. ACI J Composites Constr 4(3):154–161CrossRefGoogle Scholar
  26. McHarg J, Cook WD, Mitchell D, Yoon Y (2000) Benefits of concentrated slab reinforced and steel fibers on performance of slab-column connections. ACI Struct J 97(2):225–234Google Scholar
  27. Moe J (1961) Shearing strength of reinforced concrete slabs and footings under concentrated loads. Portland Cement Assoc D47:135Google Scholar
  28. Mokhtar AS, Ghali A, Dilger W (1985) Stud shear reinforcement for flat concrete plates. ACI J 82(5):676–683Google Scholar
  29. Oliveira DR, Melo GS, Regan PE (2000) Punching strengths of flat plates with vertical or inclined stirrups. ACI Struct J 97(3):485–491Google Scholar
  30. Ospina CE, Alexander SDB, Cheng JJR (2003) Punching of two-way concrete slabs with fiber-reinforced polymer reinforcing bars or grids. ACI Struct J 100(5):589–598Google Scholar
  31. Pilakoutas K, Li X (2003) Alternative shear reinforcement for reinforced concrete flat slabs. J Struct Eng 129(9):1164–1172CrossRefGoogle Scholar
  32. Rankin GIB, Long AE (1987) Predicting the punching strength of conventional slab-column specimens. Struct Eng Group, Part I, 82:1165–1186, April 1987Google Scholar
  33. Regan PE (1984) The dependence of punching resistance upon the geometry of the failure surface. Mag Concr Res 36(126):3–8CrossRefGoogle Scholar
  34. Sistonen E, Lydman M, Huovinen S. (1997) The geometrical model of the calculation formula of the punching shear capacity of the reinforced concrete slab. Helsinki University of Technology, Laboratory of Structural Engineering and Building Physics, October 1997Google Scholar
  35. Swamy RN, Ali SAR (1982) Punching shear behavior of reinforced slab-column connections made with steel fiber concrete. ACI J 79:392–406Google Scholar
  36. Taylor R, Hayes B (1965) Some tests on the effect of the edge restrain on punching shear in reinforced concrete slabs. Mag Concr Res 17(50):39–44CrossRefGoogle Scholar
  37. Timm M (2003) Punching of foundation slabs under axisymmetric loading. PhD diss., Institute for Building Materials, Concrete Structures and Fire Protection of the Technical University BraunschweigGoogle Scholar
  38. Urban T (1994) Nosnosc na przebicie w aspekcie proporcji bokow slupa), Badania Doswiadczalne Elementów I Konstrukcji Betonowych. Report 3. Lodz, Poland, 76 p (in Polish)Google Scholar
  39. Widianto BO, Jirsa JO, Tian Y (2010) Seismic rehabilitation of slabcolumn connections. ACI Struct J 107(2):237–247Google Scholar
  40. Yamada T, Nanni A, Endo K (1992) Punching shear resistance of flat slabs: influence of reinforcement type and ratio. Struct J 89(5):555–563Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Civile e AmbientaleUniversità degli Studi di FirenzeFlorenceItaly

Personalised recommendations