The SonReb Method: Critical Review and Practical Aspects

  • G. Uva
  • F. Porco
  • A. FioreEmail author
Conference paper
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 10)


Current regulations require surveys on materials in order to identify one or more representative values of the in-situ concrete strength. In this context, the SonReb method is widespread. It correlates the in-situ concrete strength with the ultrasonic pulse velocity and rebound-hammer index. The method improves the reliability of both non-destructive methodologies that are less reliable if considered separately. However, the method neglects the numerical dispersion of the acquired resistances, making uncertain the reliability of every representative value identified. Uncertainty is inherent not only in the variability of the parameters that determine the values, but also in the use of literature formulations calibrated on “recurring concretes”, i.e. concretes characterized by properties evenly variables (age, w/c ratio, …) that don’t allow wider use. In this work, a critical review of the SonReb method is proposed, through a purely statistical approach with the aid of surveys on some school buildings in the province of Foggia built in the 60s and 80s.


SonReb method In-situ concrete strength Material surveys Safety assessment of existing buildings 



The research presented in this article was partially funded by the Department of Civil Protection, Project ReLUIS-DPC 2014-2018.


  1. American Concrete Institute (ACI) (1998) Non-destructive test methods for evaluation of concrete in structures, ACI 228.2R-98, Detroit, MichiganGoogle Scholar
  2. Bellander U (1977) Concrete strength in finished structures: part 3. nondestructive testing methods. Investigation in laboratory in situ research. Sweden Cement Concrete Research Institute, 3:77Google Scholar
  3. Bocca P, Cianfrone S (1983) Le prove non distruttive sulle costruzioni: una metodologia combinata. L’Ind Ital del Cem 6:429–436Google Scholar
  4. Breysse D, Klysz G, Dérobert X, Sirieix C, Lataste JF (2008) How to combine several non-destructive techniques for a better assessment of concrete structures? Cem Concr Res 38:783–793CrossRefGoogle Scholar
  5. Brozovsky J (2014) Determine the compressive strength of calcium silicate bricks by combined nondestructive method. The Sci World J 2014:5 p. Article ID 829794, Scholar
  6. Cianfrone F, Facaoaru I (1979) Study on the introduction into Italy on the combined non-destructive method for the determination of in situ strength. Mater Struct 12(5):413–424Google Scholar
  7. Del Monte E, Lavacchini G, Vignoli A (2004) Modelli per la previsione della resistenza a compressione del calcestruzzo in opera. Ingegneria Sismica anno XXI no. 3Google Scholar
  8. Di Leo A, Pascale G (1994) Prove non distruttive nelle costruzioni in c.a., II g. delle prove non distruttive (4)Google Scholar
  9. Dolce M, Masi A, Ferrini M (2006) Estimation of the actual in-place concrete strength in assessing existing RC structures. In: Proceedings of 2nd international fib congress, Naples, ItalyGoogle Scholar
  10. Erdal M (2009) Prediction of the compressive strength of vacuum processed concretes using artificial neural network and regression techniques. Sci Res Essay 4(10):1057–1065Google Scholar
  11. Faella C, Guadagnuolo M, Donadio A, Ferri L (2011) Calibrazione sperimentale del metodo SonReb per costruzioni della Provincia di Caserta degli anni ’60–’80. In: Proceedings of 14th anidis conference, Bari, ItalyGoogle Scholar
  12. Federal Emergency Management Agency (2000) Prestandard for the seismic rehabilitation of buildings. FEMA 356, Reston VaGoogle Scholar
  13. Fiore A, Porco F, Uva G, Mezzina M (2013) On the dispersion of data collected by in situ diagnostic of the existing concrete. Constr Build Mater 47:208–217CrossRefGoogle Scholar
  14. Gasparik J (1992) Prove non distruttive in edilizia, Quaderno didattico. AIPND, BresciaGoogle Scholar
  15. Giochetti R, Laquaniti L (1980) Controlli non distruttivi su impalcati da ponte in calcestruzzo armato. nota tecnica 04. Università degli Studi di Ancona, Facoltà di Ingegneria, Istituto di Scienza e Tecnica delle Costruzioni, AnconaGoogle Scholar
  16. Kheder GF (1999) A two stage procedure for assessment of in situ concrete strength using combined non-destructive testing. Mater Struct 32(6):410CrossRefGoogle Scholar
  17. Lenzi M, Versari D, Zambrini R (2010) Indagine Sperimentale di Calibrazione del Metodo Combinato SonReb. INARCOS, BhavnagarGoogle Scholar
  18. MacLeod G (1971) An assessment of two non-destructive techniques as a means of examining the quality and variability of concrete in structures. Rep. C1/sfB/ Eg/(A7q)UDC 666.972.017.620 179.142.454. Cement and Concrete Association, LondonGoogle Scholar
  19. Malhotra VM (1974) Contract strength requirements - cores versus in situ evaluation. ACI J Proc 74(4):163–172Google Scholar
  20. Masi A (2005) La stima del calcestruzzo in situ mediante prove distruttive e non distruttive. Il giornale delle prove non distruttive, N.1/2005Google Scholar
  21. Masi A, Chiauzzi L (2013) An experimental study on the within-member variability of in situ concrete strength in RC building structures. Constr Build Mater 47:951–961CrossRefGoogle Scholar
  22. Meynink P, Samarin A (1979) Assessment of compressive strength of concrete by cylinders, cores and non-destructive tests. In: Proceedings on quality control of concrete structures RILEM symposium, session 2.1. Swedish Concrete Research Institute Stockholm, Sweden, pp 127– 134Google Scholar
  23. Mikulic D, Pause Z, Ukraincik V (1992) Determination of concrete quality in a structure by combination of destructive and non-destructive methods. Mater Struct 25:65–69CrossRefGoogle Scholar
  24. Ministero delle Infrastrutture e dei Trasporti (2009) Circolare 2 febbraio 2009, n. 617: Istruzioni per l’applicazione delle “Nuove norme tecniche per le costruzioni” di cui al Decreto Ministeriale, 14 gennaio 2008Google Scholar
  25. Ministero delle Infrastrutture e dei Trasporti (2008) DM 14/01/08: “Norme Tecniche per le Costruzioni”, G.U. n. 29 del 4 febbraio 2008, Supplemento Ordinario n. 30Google Scholar
  26. Mulik Nikhil V, Balki Minal R, Chhabria Deep S, Ghare Vijay D, Tele Vishal S (2015) The use of combined non-destructive testing in the concrete strength assessment from laboratory specimens and existing buildings. ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, vol 2, no. 5Google Scholar
  27. Porco F, Uva G, Fiore A, Mezzina M (2014) Assessment of concrete degradation in existing structures: a practical procedure. Struct Eng Mech 52(4):701–721CrossRefGoogle Scholar
  28. Postacioglu B (1985) Nouvelle significations de I’indice sclerometrque schmidt et de la vitesse de propogation des ultra-sons. Mater Struct 447–451Google Scholar
  29. Pucinotti R (2013) Assessment of in situ characteristic concrete strength. Constr Build Mater 44:63–73CrossRefGoogle Scholar
  30. Qasrawi HY (2000) Concrete strength by combined nondestructive methods simply and reliably predicted. Cem Concr Res 30:739–746CrossRefGoogle Scholar
  31. RILEM (1993) NDT 4 Recommendations for in situ concrete strength determination by combined non-destructive methods. Compendium of RILEM Technical Recommendations, E&FN Spon, LondonGoogle Scholar
  32. Tanigawa Y, Baba K, Mori H (1984) Estimation of concrete strength by combined nondestructive testing method. ACI SP 82(1):57–65Google Scholar
  33. Uva G, Porco F, Fiore A, Mezzina M (2013) Proposal of methodology for assessing the reliability of in-situ concrete tests and improving the estimate of the compressive strength. Constr Build Mater 38:72–83CrossRefGoogle Scholar
  34. Uva G, Porco F, Fiore A, Mezzina M (2014) The assessment of structural concretes during construction phase. Struct Surv 32(3):2–22CrossRefGoogle Scholar
  35. Wiebenga JG (1968) A comparison between various combined nondestructive methods to derive the compressive strength of concrete. In: Rep kB1-68- 61/1418. Inst TNO Veor Bouwmaterialen en Bouwconstructies. DelftGoogle Scholar
  36. Whitehurst E (1951) Soniscope tests concrete structures. J Am Concr Inst 47:433–444Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DICATEChPolitecnico di BariBariItaly

Personalised recommendations