Intuitionistic Fuzzy Evaluations for the Analysis of a Student’s Knowledge in University e-Learning Courses

  • Evdokia SotirovaEmail author
  • Anthony Shannon
  • Taekyun Kim
  • Maciej Krawczak
  • Pedro Melo-Pinto
  • Beloslav Riečan
Part of the Studies in Computational Intelligence book series (SCI, volume 757)


In the paper is proposed a method for evaluation of the student’s knowledge obtained in the university e-learning courses. For the assessment of the student’s solution of the respective assessment units the theory of intuitionistic fuzzy sets is used. The obtained intuitionistic fuzzy estimations reflect the degree of each student’s good performances, or poor performances, for each assessment unit. We also consider a degree of uncertainty that represents such cases where the student is currently unable to solve the problem. The method presented here provides the possibility for the algorithmization of the process of forming the student’s evaluations.


e-learning Intuitionistic fuzzy evaluation Generalized net modelling 


  1. 1.
    Atanassov, K., Generalized Nets. World Scientific, 1991.Google Scholar
  2. 2.
    Atanassov, K., On Generalized Nets Theory. Prof. M. Drinov Academic Publishing House, Sofia, 2007.Google Scholar
  3. 3.
    Atanassov, K., Intuitionistic Fuzzy Sets, Springer Physica-Verlag, Berlin, 1999.Google Scholar
  4. 4.
    Atanassov, K., Intuitionistic fuzzy sets. Fuzzy Sets and Systems, Vol. 20, 1986, 87–96.Google Scholar
  5. 5.
    Kensington-Miller, J. Novak, T. Evans, Just do it: flipped lecture, determinants and debate. International Journal of Mathematical Education in Science and Technology, 47 (2016), No.6, 853–862.Google Scholar
  6. 6.
    Melo-Pinto, P., T. Kim, K. Atanassov, E. Sotirova, A. Shannon and M. Krawczak, Generalized net model of e-learning evaluation with intuitionistic fuzzy estimations, Issues in the Representation and Processing of Uncertain and Imprecise Information, Warszawa, 2005, 241–249.Google Scholar
  7. 7.
    Shannon, A., D. Langova-Orozova, E. Sotirova, I. Petrounias, K. Atanassov, M. Krawczak, P. Melo-Pinto, T. Kim, Generalized Net Modelling of University Processes. KvB Visual Concepts Pty Ltd, Monograph No. 7, Sydney, 2005.Google Scholar
  8. 8.
    Shannon, A., K. Atanassov, E. Sotirova, D. Langova-Orozova, M. Krawczak, P. Melo-Pinto, I. Petrounias, T. Kim, Generalized Nets and Information Flow Within a University, Warszawa, 2007.Google Scholar
  9. 9.
    Shannon, A., E. Sotirova, I. Petrounias, K. Atanassov, M. Krawczak, P. Melo-Pinto, T. Kim, Intuitionistic fuzzy estimations of lecturers’ evaluation of student work, First International Workshop on Intuitionistic Fuzzy Sets, Generalized Nets and Knowledge Engineering, University of Westminster, London, 6–7 September 2006, 44–47.Google Scholar
  10. 10.
    Shannon, A., E. Sotirova, I. Petrounias, K. Atanassov, M. Krawczak, P. Melo-Pinto, T. Kim, Generalized net model of lecturers’ evaluation of student work with intuitionistic fuzzy estimations, Second International Workshop on Intuitionistic Fuzzy Sets, Banska Bystrica, Slovakia, 3 December 2006, Notes on IFS, Vol. 12, 2006, No. 4, 22–28.Google Scholar
  11. 11.
    Shannon, A., E. Sotirova, K. Atanassov, M. Krawczak, P. Melo-Pinto, T. Kim, Generalized Net Model for the Reliability and Standardization of Assessments of Student Problеm Solving with Intuitionistic Fuzzy Estimations, Developments in Fuzzy Sets, Generalized Nets and Related Topics. Applications. Vol. 2, System Research Institute, Polish Academy of Science, 2008, 249–256.Google Scholar
  12. 12.
    Shannon, A., D. Dimitrakiev, E. Sotirova, M. Krawczak, T. Kim, Towards a Model of the Digital University: Generalized Net Model of a Lecturer’s Evaluation with Intuitionistic Fuzzy Estimations, Cybernetics and Information Technologies, Bulgarian Academy of Sciences, Vol. 9, 2009 No 2, 69–78.Google Scholar
  13. 13.
    Shannon, A., E. Sotirova, M. Hristova, T. Kim, Generalized Net Model of a Student’s Course Evaluation with Intuitionistic Fuzzy Estimations in a Digital University, Proceedings of the Jangjeon Mathematical Society, 13 (2010), No 1, 31–38.Google Scholar
  14. 14.
    Sotirova, E., K, Atanassov, A. Shannon, M. Krawczak, Melo-Pinto, B. Riečan, T. Kim, Intuitionistic Fuzzy Evaluations for Analysis of a Student’s Knowledge of mathematics in the University e-Learning Courses, 2016 IEEE 8th International Conference on Intelligent Systems, 535–537.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Evdokia Sotirova
    • 1
    Email author
  • Anthony Shannon
    • 2
  • Taekyun Kim
    • 3
  • Maciej Krawczak
    • 4
  • Pedro Melo-Pinto
    • 5
  • Beloslav Riečan
    • 6
    • 7
  1. 1.Laboratory of Intelligent SystemsUniversity “Prof. Dr. Assen Zlatarov”BurgasBulgaria
  2. 2.Resident Fellow, Warrane College, The University of New South WalesKensingtonAustralia
  3. 3.Division of General Education-MathematicsKangwoon UniversitySeoulKorea
  4. 4.Systems Research Institute, Polish Academy of Sciences Warsaw School of Information TechnologyWarsawPoland
  5. 5.CITAB, University of Trás-os-Montes and Alto DouroVila RealPortugal
  6. 6.Faculty of Natural SciencesMatej Bel UniversityBanská BystricaSlovakia
  7. 7.Mathematical Institute, Slovak Academy of SciencesBratislavaSlovakia

Personalised recommendations