Advertisement

Single- and Multi-objective Optimization of Casting Processes Using Jaya Algorithm and Its Variants

  • Ravipudi Venkata RaoEmail author
Chapter

Abstract

In the case of casting processes, the effectiveness of Jaya and QO-Jaya algorithms is tested on optimization problems of squeeze casting process, continuous casting process, pressure die casting process and green sand casting process. The results of Jaya and QO-Jaya algorithms are compared with the results of GA, PSO, SA, TLBO algorithms and Taguchi method used by the previous researchers on the basis of objective function value, convergence speed and computational time. The results of Jaya and QO-Jaya algorithm are found better.

Keywords

Squeeze Casting Process Jaya Algorithm TLBO Algorithm Teaching–learning-based Optimization (TLBO) Taguchi Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Chiang, K. T., Liu, N. M., & Chou, C. C. (2008). Machining parameters optimization on the die casting process of magnesium alloy using the grey-based fuzzy algorithm. The International Journal of Advanced Manufacturing Technology, 38, 229–237.CrossRefGoogle Scholar
  2. Guharaja, S., Haq, A. N., & Karuppannan, K. M. (2006). Optimization of green sand casting process parameters by using Taguchis method. International Journal of Advanced Manufacturing Technology, 30, 1040–1048.CrossRefGoogle Scholar
  3. Kittur, Jayant K., Choudhari, M. N., & Parappagoudar, M. B. (2014). Modeling and multi-response optimization of pressure die casting process using response surface methodology. International Journal of Advanced Manufacturing Technology, 77, 211–224.CrossRefGoogle Scholar
  4. Kulkarni, M. S., & Babu, A. S. (2005). Managing quality in continuous casting process using product quality model and simulated annealing. Journal of Materials Processing Technology, 166, 294–306.CrossRefGoogle Scholar
  5. Kumar, S., Satsangi, P. S., & Prajapati, D. R. (2011). Optimization of green sand casting process parameters of a foundry by using Taguchi’s method. International Journal of Advanced Manufacturing Technology, 55, 23–34.CrossRefGoogle Scholar
  6. Kumaravadivel, A., & Natarajan, U. (2013). Optimization of sand-casting process variables—A process window approach. International Journal of Advanced Manufacturing Technology, 66, 695–709.CrossRefGoogle Scholar
  7. Li, Y., Yang, H., & Xing, Z. (2017). Numerical simulation and process optimization of squeeze casting process of an automobile control arm. International Journal of Advanced Manufacturing Technology, 88, 941–947.CrossRefGoogle Scholar
  8. Park, Y. K., & Yang, J. M. (2011). Maximizing average efficiency of process time for pressure die casting in real foundries. International Journal of Advanced Manufacturing Technology, 53, 889–897.CrossRefGoogle Scholar
  9. Patel, M. G. C., Prasad, K., & Parappagoudar, M. B. (2016). An intelligent system for squeeze casting process—Soft computing based approach. International Journal of Advanced Manufacturing Technology, 86, 3051–3065.CrossRefGoogle Scholar
  10. Rao, R. V., Kalyankar, V. D., & Waghmare, G. G. (2014). Parameters optimization of selected casting processes using teaching-learning-based optimization algorithm. Applied Mathematical Modelling, 38, 5592–5608.CrossRefGoogle Scholar
  11. Rao, R. V., & Rai, D. P. (2017). Optimization of selected casting processes using Jaya algorithm. Materials Today: Proceedings, 4, 11056–11067.CrossRefGoogle Scholar
  12. Senthil, P., & Amirthagadeswaran, K. S. (2012). Optimization of squeeze casting parameters for non symmetrical AC2A aluminium alloy castings through Taguchi method. Journal of Mechanical Science and Technology, 26, 1141–1147.CrossRefGoogle Scholar
  13. Senthil, P., & Amirthagadeswaran, K. S. (2014). Experimental study and squeeze casting process optimization for high quality AC2A aluminium alloy castings. Arabian Journal for science and Engineering, 39(3), 2215–2225.CrossRefGoogle Scholar
  14. Surekha, B., Kaushik, L. K., Panduy, A. K., Vundavilli, P. R., & Parappagoudar, M. B. (2012). Multi-objective optimization of green sand mould system using evolutionary algorithms. International Journal of Advanced Manufacturing Technology, 58, 9–17.CrossRefGoogle Scholar
  15. Tsoukalas, V. D. (2008). Optimization of porosity formation in AlSi9Cu3 pressure die castings using genetic algorithm analysis. Materials and Design, 29(10), 2027–2033.CrossRefGoogle Scholar
  16. Vijian, P., & Arunachalam, V. P. (2006). Optimization of squeeze casting process parameters using Taguchi analysis. International Journal of Advanced Manufacturing Technology, 33, 1122–1127.CrossRefGoogle Scholar
  17. Wang, X., Wang, Z., Liu, Y., Du, F., Yao, M., & Zhang, X. (2016). A particle swarm approach for optimization of secondary cooling process in slab continuous casting. International Journal of Heat and Mass Transfer, 93, 250–256.CrossRefGoogle Scholar
  18. Zhang, H. G., & Hu, Q. X. (2016). Study of the filling mechanism and parameter optimization method for vacuum casting. International Journal of Advanced Manufacturing Technology, 83, 711–720.CrossRefGoogle Scholar
  19. Zhang, L., & Wang, R. (2013). An intelligent system for low-pressure die-cast process parameters optimization. International Journal of Advanced Manufacturing Technology, 65, 517–524.CrossRefGoogle Scholar
  20. Zheng, J., Wang, Q., Zhao, P., & Wu, C. (2009). Optimization of high-pressure die-casting process parameters using artificial neural network. International Journal of Advanced Manufacturing Technology, 44, 667–674.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringS.V. National Institute of TechnologySuratIndia

Personalised recommendations