Advertisement

Single- and Multi-objective Optimization of Traditional and Modern Machining Processes Using Jaya Algorithm and Its Variants

  • Ravipudi Venkata RaoEmail author
Chapter

Abstract

This chapter describes the formulation of process parameters optimization models for traditional machining processes of turning, surface grinding and modern machining processes of wire electric discharge machining (wire EDM), electro-discharge machining (EDM), micro-electric discharge machining, electro-chemical machining (ECM), abrasive waterjet machining (AWJM), focused ion beam (FIB) micro-milling, laser cutting and plasma arc machining. The TLBO and NSTLBO algorithms, Jaya algorithm and its variants such as Quasi-oppositional (QO) Jaya, multi-objective (MO) Jaya, and multi-objective quasi-oppositional (MOQO) Jaya are applied to solve the single and multi-objective optimization problems of the selected traditional and modern machining processes. The results are found better as compared to those given by the other advanced optimization algorithms.

References

  1. Acharya, B. G., Jain, V. K., & Batra, J. L. (1986). Multiobjective optimization of ECM process. Precision Engineering, 8, 88–96.CrossRefGoogle Scholar
  2. Baskar, N., Saravanan, R., Asokan, P., & Prabhaharan, G. (2004). Ants colony algorithm approach for multi-objective optimization of surface grinding operations. International Journal of Advanced Manufacturing Technology, 23, 311–317.CrossRefGoogle Scholar
  3. Bhattacharyya, B., & Sorkhel, S. K. (1999). Investigation for controlled electrochemical machining through response surface methodology-based approach. Journal of Materials Processing Technology, 86, 200–207.CrossRefGoogle Scholar
  4. Bhavsar, S. N., Aravindan, S., & Rao, P. V. (2015). Investigating material removal rate and surface roughness using multi-objective optimization for focused ion beam (FIB) micro-milling of cemented carbide. Precision Engineering, 40, 131–138.CrossRefGoogle Scholar
  5. Choobineh, F., Jain, V. K., (1990) Selection of ECM parameters: A fuzzy sets approach. In: Proceedings of the 1990 International Conference on Systems, Man and Cybernetics, IEEE, Los Angeles, CA, USA, pp. 430–435.Google Scholar
  6. Garg, M. P., Jain, A., & Bhushan, G. (2012). Modelling and multi-objective optimization of process parameters of wire electrical discharge machining using non-dominated sorting genetic algorithm-II. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226(12), 1986–2001.CrossRefGoogle Scholar
  7. Jain, N. K., & Jain, V. K. (2007). Optimization of electrochemical machining process parameters using genetic algorithm. Machining Science and Technology, 11, 235–258.CrossRefGoogle Scholar
  8. Kovacevic, M., Madic, M., Radovanovic, M., & Rancic, D. (2014). Software prototype for solving multi-objective machining optimization problems: Application in non-conventional machining processes. Expert Systems with Applications, 41, 5657–5668.CrossRefGoogle Scholar
  9. Kuriachen, B., Somashekhar, K. P., & Mathew, J. (2015). Multiresponse optimization of micro-wire electrical discharge machining process. The International Journal of Advanced Manufacturing Technology, 76(1–4), 91–104.CrossRefGoogle Scholar
  10. Kuriakose, S., & Shunmugam, M. S. (2005). Multi-objective optimization of wire-electro discharge machining process by non-dominated sorting genetic algorithm. Journal of Materials Processing Technology, 170, 133–141.CrossRefGoogle Scholar
  11. Mukherjee, R., & Chakraborty, S. (2013). Selection of the optimal electrochemical machining process parameters using biogeography-based optimization algorithm. International Journal of Advanced Manufacturing Technology, 64, 781–791.CrossRefGoogle Scholar
  12. Palanikumar, K., Latha, B., Senthilkumar, V. S., & Karthikeyan, R. (2009). Multiple performance optimization in machining of GFRP composites by a PCD tool using non-dominated sorting genetic algorithm (NSGA-II). Metals and Materials International, 15(2), 249–258.CrossRefGoogle Scholar
  13. Pandey, A. K., & Dubey, A. K. (2012). Simultaneous optimization of multiple quality characteristics in laser cutting of titanium alloy sheet. Optics & Laser Technology, 44, 1858–1865.CrossRefGoogle Scholar
  14. Pawar, P. J., & Rao, R. V. (2013). Parameter optimization of machining processes using teaching—learning-based optimization algorithm. International Journal of Advanced Manufacturing Technology, 67, 995–1006.CrossRefGoogle Scholar
  15. Pawar, P. J., Rao, R. V., & Davim, J. P. (2010). Multiobjective optimization of grinding process parameters using particle swarm optimization algorithm. Materials and Manufacturing Processes, 25, 424–431.CrossRefGoogle Scholar
  16. Rao, R. V. (2010). Advanced modelling and optimization of manufacturing processes: international research and development. London: Springer Verlag.Google Scholar
  17. Rao, R. V., Pawar, P. J., & Shankar, R. (2008). Multi-objective optimization of electrochemical machining process parameters using a particle swarm optimization algorithm. Journal of Engineering Manufacture, 222, 949–958.CrossRefGoogle Scholar
  18. Rao, R. V., Rai, D. P., & Balic, J. (2017a). A multi-objective algorithm for optimization of modern machining processes. Engineering Applications of Artificial Intelligence, 61, 103–125.CrossRefGoogle Scholar
  19. Rao, R. V., Rai, D. P., Ramkumar, J., & Balic, J. (2016a). A new multiobjective Jaya algorithm for optimization of modern machining processes. Advances in Production Engineering and Management, 11(4), 271–286.CrossRefGoogle Scholar
  20. Rao, R. V., Rai, D. P., Balic, J. (2016b) Multi-objective optimization of machining and micro-machining processes using non-dominated sorting teaching–learning-based optimization algorithm. Journal of Intelligent Manufacturing.  https://doi.org/10.1007/s10845-016-1210-5.
  21. Rao, R. V., Rai, D. P., Balic, J., Cus, F. (2017b) Optimization of abrasive waterjet machining process using multiobjective Jaya algorithm. Materials Today: Proceedings.Google Scholar
  22. Saravanan, R., Asokan, P., & Sachidanandam, M. (2002). A multiobjective genetic algorithm approach for optimization of surface grinding operations. International Journal of Machine Tools and Manufacture, 42, 1327–1334.CrossRefGoogle Scholar
  23. Shukla, R., & Singh, D. (2016). Experimentation investigation of abrasive water jet machining parameters using Taguchi and evolutionary optimization techniques. Swarm and Evolutionary Computation, 32, 167–183.CrossRefGoogle Scholar
  24. Wen, X. M., Tay, A. A. O., & Nee, A. Y. C. (1992). Microcomputer based optimization of the surface grinding process. Journal of Materials Processing Technology, 29, 75–90.CrossRefGoogle Scholar
  25. Zou, F., Wang, L., Hei, X., Chen, D., & Wang, B. (2014). Multi-objective optimization using teaching–learning-based optimization algorithm. Engineering Applications of Artificial Intelligence, 26, 1291–1300.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringS.V. National Institute of TechnologySuratIndia

Personalised recommendations