Skip to main content

Single- and Multi-objective Design Optimization of Heat Exchangers Using Jaya Algorithm and Its Variants

  • Chapter
  • First Online:
Jaya: An Advanced Optimization Algorithm and its Engineering Applications
  • 617 Accesses

Abstract

This chapter presents design optimization case studies of shell-and-tube and plate-fin heat exchangers. The single objective and multi-objective design optimization case studies are solved by the Jaya algorithm and its variants such as self-adaptive Jaya, SAMP-Jaya and SAMPE-Jaya. The results of application of Jaya algorithm and its variants are compared with those of the other state-of-the-art optimization algorithms and the performance supremacy of the Jaya algorithm and its variants is established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asadi, A., Songb, Y., Sundenc, B., & Xie, G. (2014). Economic optimization design of shell-and-tube heat exchangers by a cuckoo-search-algorithm. Applied Thermal Engineering, 73(1), 1032–1040.

    Article  Google Scholar 

  • Ayala, H. V. H., Keller, P., Morais, M. D. F., Mariani, V. C., Coelho, L. D. S., & Rao, R. V. (2016). Design of heat exchangers using a novel multiobjective free search differential evaluation paradigm. Applied Thermal Engineering, 94, 170–177.

    Article  Google Scholar 

  • Caputo, A. C., Pelagagge, P. M., & Salini, P. (2008). Heat exchanger design based on economic optimization. Applied Thermal Engineering, 10, 1151–1159.

    Article  Google Scholar 

  • Cavazzuti, M., Agnani, E., & Corticelli, M. A. (2015). Optimization of a finned concentric pipes heat exchanger for industrial recuperative burners. Applied Thermal Engineering, 84, 110–117.

    Article  Google Scholar 

  • Dhavale, S. V., Kulkarni, A. J., Shastri, A., & Kale, I. R. (2016). Design and economic optimization of shell-and-tube heat exchanger using cohort intelligence algorithm. Natural Computing Applications. https://doi.org/10.1007/s00521-016-2683-z.

  • Du, T., Du, W., Che, K., & Cheng, L. (2015). Parametric optimization of overlapped helical baffled heat exchangers by Taguchi method. Applied Thermal Engineering, 85, 334–339.

    Article  Google Scholar 

  • Edwards, J. E. (2008). Design and rating of shell-and-tube heat exchangers. Teesside, UK: P and I Design Ltd.

    Google Scholar 

  • Gharbi, N. E., Kheiri, A., Ganaoui, M. E., & Blanchard, R. (2015). Numerical optimization of heat exchangers with circular and non-circular shapes. Case Studies in Thermal Engineering, 6, 194–203.

    Article  Google Scholar 

  • Hadidi, A. (2016). A robust approach for optimal design of plat fin heat exchanger using biogeography based optimization (BBO) algorithm. Applied Energy, 150, 196–210.

    Article  Google Scholar 

  • Hadidi, A., & Nazari, A. (2013a). A new design approach for shell-and-tube heat exchangers using imperialist competitive algorithm (ICA) from economic point of view. Energy Conversion and Management, 67, 66–74.

    Article  Google Scholar 

  • Hadidi, A., & Nazari, A. (2013b). Design and economic optimization of shell-and-tube heat exchangers using biogeography-based (BBO) algorithm. Applied Thermal Engineering, 51(1–2), 1263–1272.

    Article  Google Scholar 

  • Han, W. T., Tang, L. H., & Xie, G. N. (2008). Performance comparison of particle swarm optimization and genetic algorithm in rolling fin-tube heat exchanger optimization design. In Proceedings of the ASME Summer Heat Transfer Conference, Jacksonville, FL (pp. 5–10).

    Google Scholar 

  • Hosseini, R., & Ceylan, H. (2009). A new solution algorithm for improving performance of ant colony optimization. Applied Mathematics and Computation, 211, 75–84.

    Article  MathSciNet  Google Scholar 

  • Incropera, F. P., & DeWitt, D. P. (1996). Fundamentals of heat and mass transfer. New York: Wiley.

    Google Scholar 

  • Incropera, F. P., Dewitt, D. P., Bergman, T. L., & Lavine, A. S. (2010). Fundamentals of heat and mass transfer. New York: Wiley.

    Google Scholar 

  • Jorge, A. W., Gut, M., & Pinto, J. M. (2004). Optimal configuration design for plate heat exchangers. International Journal of Heat and Mass Transfer, 47, 4833–4848.

    Article  Google Scholar 

  • Kang, L., Liu, Y., & Liang, X. (2015). Multi-objective optimization of heat exchanger networks based on analysis of minimum temperature difference and accumulated CO2 emissions. Applied Thermal Engineering, 87, 736–748.

    Article  Google Scholar 

  • Kern, D. Q. (1950). Process heat transfer. Tokyo: McGraw-Hill Book Company, Inc.

    Google Scholar 

  • Lee, S. M., & Kim, K. Y. (2015). Multi-objective optimization of arc-shaped ribs in the channels of a printed circuit heat exchanger. International Journal of Thermal Sciences, 94, 1–8.

    Article  Google Scholar 

  • Lemouedda, A., Breuer, M., Franz, E., Botsch, T., & Delgado, A. (2010). Optimization of the angle of attack of delta-winglet vortex generators in a plate-fin-and-tube heat exchanger. International Journal of Heat and Mass Transfer, 53, 5386–5399.

    Article  Google Scholar 

  • Mishra, M., & Das, P. K. (2009). Thermo economic design-optimization of cross flow plate-fin heat exchanger using genetic algorithm. International Journal of Exergy, 6(6), 237–252.

    Article  Google Scholar 

  • Mishra, M., Das, P. K., & Sarangi, S. (2009). Second law based optimization of crossflow plate-fin heat exchanger using genetic algorithm. Applied Thermal Engineering, 29, 2983–2989.

    Article  Google Scholar 

  • Miyazaki, T., & Akisawa, A. (2009). The influence of heat exchanger parameters on the optimum cycle time of adsorption chillers. Applied Thermal Engineering, 29(13), 2708–2717.

    Article  Google Scholar 

  • Mohanty, A. K. (2016). Application of firefly algorithm for design optimization of a shell and tube heat exchanger from economic point of view. International Journal of Thermal Sciences, 102, 228–238.

    Article  Google Scholar 

  • Najafi, H., Najafi, B., & Hoseinpoori, P. (2011). Energy and cost optimization of a plate and fin heat exchanger using genetic algorithm. Applied Thermal Engineering, 31, 1839–1847.

    Article  Google Scholar 

  • Patel, V. K., & Rao, R. V. (2010). Design optimization of shell-and-tub heat exchanger using particle swarm optimization technique. Applied Thermal Engineering, 30(11–12), 1417–1425.

    Article  Google Scholar 

  • Peng, H., & Ling, X. (2008). Optimal design approach for the plate-fin heat exchangers using neural networks cooperated with genetic algorithms. Applied Thermal Engineering, 28, 642–650.

    Article  MathSciNet  Google Scholar 

  • Rao, R. V., & Patel, V. K. (2013). Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm. Applied Mathematical Modelling, 37(3), 1147–1162.

    Article  MathSciNet  Google Scholar 

  • Rao, R. V., & Patel, V. K. (2011). Optimization of mechanical draft counter flow wet cooling tower using artificial bee colony algorithm. Energy Conversion and Management, 52, 2611–2622.

    Article  Google Scholar 

  • Rao, R. V., & Patel, V. K. (2010). Thermodynamic optimization of cross flow plate-fin heat exchanger using a particle swarm optimization algorithm. International Journal of Thermal Sciences, 49, 1712–1721.

    Article  Google Scholar 

  • Rao, R. V., & Saroj, A. (2017a). Constrained economic optimization of shell-and-tube heat exchangers using elitist-Jaya algorithm. Energy, 128, 785–800.

    Article  Google Scholar 

  • Rao, R. V., & Saroj, A. (2017b). Economic optimization of shell-and-tube heat exchangers using Jaya algorithm with maintenance consideration. Applied Thermal Engineering, 116, 473–487.

    Article  Google Scholar 

  • Rao, R. V., & Saroj, A. (2017c). A self-adaptive multi-population based Jaya algorithm for engineering optimization. Swarm and Evolutionary Computation. https://doi.org/10.1016/j.swevo.2017.04.008.

    Article  Google Scholar 

  • Rao, R. V., & Saroj, A. (2017d). Single objective and multi-objective design optimization of plate-fin heat exchangers using Jaya algorithm. Heat Transfer Engineering (in press).

    Google Scholar 

  • Ravagnani, M. A. S. S., Silva, A. P., Biscaia, E. C., & Caballero, J. A. (2009). Optimal design of shell-and-tube heat exchangers using particle swarm optimization. Industrial and Engineering Chemistry Research, 48(6), 2927–2935.

    Article  Google Scholar 

  • Reneaume, J. M., & Niclout, N. (2003). MINLP optimization of plate-fin heat exchangers. Chemical and Biochemical Engineering Quarterly, 17, 65–76.

    Google Scholar 

  • Sahin, A. S., Kilic, B., & Kilic, U. (2011). Design and economic optimization of shell-and-tube heat exchangers using artificial bee colony (ABC) algorithm. Energy Conversion and Management, 52(11), 1417–1425.

    Google Scholar 

  • Sanaye, S., & Hajabdollahi, H. (2010). Thermal-economic multi-objective optimization of plate-fin heat exchanger using genetic algorithm. Applied Energy, 87, 1893–1902.

    Article  Google Scholar 

  • Selbas, R., Kizilkan, O., & Reppich, M. (2006). A new design approach for shell-and-tube heat exchangers using genetic algorithms from economic point of view. Chemical Engineering and Processing, 45, 268–275.

    Article  Google Scholar 

  • Shah, R. K., & Bell, K. J. (2009). CRC handbook of thermal engineering. Florida: CRC Press.

    Google Scholar 

  • Shah, R. K., & Sekulic, D. P. (2003). Fundamentals of heat exchanger design. New York: Wiley.

    Book  Google Scholar 

  • Sinnot, R. K., Coulson, J. M., & Richardson, J. F. (1996). Chemical engineering design (Vol. 6). Boston MA: Butterworth-Heinemann.

    Google Scholar 

  • Taal, M., Bulatov, I., Klemes, J., & Stehlik, P. (2003). Cost estimation and energy price forecast for economic evaluation of retrofit projects. Applied Thermal Engineering, 23, 1819–1835.

    Article  Google Scholar 

  • Turgut, O. E., & Çoban, M. T. (2016). Thermal design of spiral heat exchangers and heat pipes through global best algorithm. Heat Mass Transfer, 1–18. https://doi.org/10.1007/s00231-016-1861-y.

  • Turgut, O. E., Turgut, M. S., & Coban, M. T. (2014). Design and economic investigation of shell and tube heat exchangers using improved intelligent tuned harmony search algorithm. Ain Shams Engineering Journal, 5(4), 1215–1231.

    Article  Google Scholar 

  • Wang, Z., & Li, Y. (2015). Irreversibility analysis for optimization design of plate fin heat exchangers using a multi-objective cuckoo search algorithm. Energy Conversion and Management, 101, 126–135.

    Article  Google Scholar 

  • Wong, J. Y. Q., Sharma, S., & Rangaiah, G. P. (2016). Design of shell-and-tube heat exchangers for multiple objectives using elitist non-dominated sorting genetic algorithm with termination criteria. Applied Thermal Engineering, 93, 888–899.

    Article  Google Scholar 

  • Xie, G. N., Sunden, B., & Wang, Q. W. (2008). Optimization of compact heat exchangers by a genetic algorithm. Applied Thermal Engineering, 28, 895–906.

    Article  Google Scholar 

  • Yousefi, M., Darus, A. N., & Mohammadi, H. (2012). An imperialist competitive algorithm for optimal design of plate-fin heat exchangers. International Journal of Heat and Mass Transfer, 55, 3178–3185.

    Article  Google Scholar 

  • Yu, X. C., Cui, Z. Q., & Yu, Y. (2008). Fuzzy optimal design of the plate-fin heat exchangers by particle swarm optimization, In Proceedings of the Fifth International Conference on Fuzzy Systems and Knowledge Discovery, Jinan, China (pp. 574–578).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravipudi Venkata Rao .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Venkata Rao, R. (2019). Single- and Multi-objective Design Optimization of Heat Exchangers Using Jaya Algorithm and Its Variants. In: Jaya: An Advanced Optimization Algorithm and its Engineering Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-78922-4_4

Download citation

Publish with us

Policies and ethics