Advertisement

Single- and Multi-objective Design Optimization of Heat Exchangers Using Jaya Algorithm and Its Variants

  • Ravipudi Venkata RaoEmail author
Chapter
  • 305 Downloads

Abstract

This chapter presents design optimization case studies of shell-and-tube and plate-fin heat exchangers. The single objective and multi-objective design optimization case studies are solved by the Jaya algorithm and its variants such as self-adaptive Jaya, SAMP-Jaya and SAMPE-Jaya. The results of application of Jaya algorithm and its variants are compared with those of the other state-of-the-art optimization algorithms and the performance supremacy of the Jaya algorithm and its variants is established.

Keywords

Jaya Algorithm TLBO Algorithm Minimum Total Annual Cost Tube Side Heat Transfer Coefficient Shell Side 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Asadi, A., Songb, Y., Sundenc, B., & Xie, G. (2014). Economic optimization design of shell-and-tube heat exchangers by a cuckoo-search-algorithm. Applied Thermal Engineering, 73(1), 1032–1040.CrossRefGoogle Scholar
  2. Ayala, H. V. H., Keller, P., Morais, M. D. F., Mariani, V. C., Coelho, L. D. S., & Rao, R. V. (2016). Design of heat exchangers using a novel multiobjective free search differential evaluation paradigm. Applied Thermal Engineering, 94, 170–177.CrossRefGoogle Scholar
  3. Caputo, A. C., Pelagagge, P. M., & Salini, P. (2008). Heat exchanger design based on economic optimization. Applied Thermal Engineering, 10, 1151–1159.CrossRefGoogle Scholar
  4. Cavazzuti, M., Agnani, E., & Corticelli, M. A. (2015). Optimization of a finned concentric pipes heat exchanger for industrial recuperative burners. Applied Thermal Engineering, 84, 110–117.CrossRefGoogle Scholar
  5. Dhavale, S. V., Kulkarni, A. J., Shastri, A., & Kale, I. R. (2016). Design and economic optimization of shell-and-tube heat exchanger using cohort intelligence algorithm. Natural Computing Applications.  https://doi.org/10.1007/s00521-016-2683-z.
  6. Du, T., Du, W., Che, K., & Cheng, L. (2015). Parametric optimization of overlapped helical baffled heat exchangers by Taguchi method. Applied Thermal Engineering, 85, 334–339.CrossRefGoogle Scholar
  7. Edwards, J. E. (2008). Design and rating of shell-and-tube heat exchangers. Teesside, UK: P and I Design Ltd.Google Scholar
  8. Gharbi, N. E., Kheiri, A., Ganaoui, M. E., & Blanchard, R. (2015). Numerical optimization of heat exchangers with circular and non-circular shapes. Case Studies in Thermal Engineering, 6, 194–203.CrossRefGoogle Scholar
  9. Hadidi, A. (2016). A robust approach for optimal design of plat fin heat exchanger using biogeography based optimization (BBO) algorithm. Applied Energy, 150, 196–210.CrossRefGoogle Scholar
  10. Hadidi, A., & Nazari, A. (2013a). A new design approach for shell-and-tube heat exchangers using imperialist competitive algorithm (ICA) from economic point of view. Energy Conversion and Management, 67, 66–74.CrossRefGoogle Scholar
  11. Hadidi, A., & Nazari, A. (2013b). Design and economic optimization of shell-and-tube heat exchangers using biogeography-based (BBO) algorithm. Applied Thermal Engineering, 51(1–2), 1263–1272.CrossRefGoogle Scholar
  12. Han, W. T., Tang, L. H., & Xie, G. N. (2008). Performance comparison of particle swarm optimization and genetic algorithm in rolling fin-tube heat exchanger optimization design. In Proceedings of the ASME Summer Heat Transfer Conference, Jacksonville, FL (pp. 5–10).Google Scholar
  13. Hosseini, R., & Ceylan, H. (2009). A new solution algorithm for improving performance of ant colony optimization. Applied Mathematics and Computation, 211, 75–84.MathSciNetCrossRefGoogle Scholar
  14. Incropera, F. P., & DeWitt, D. P. (1996). Fundamentals of heat and mass transfer. New York: Wiley.Google Scholar
  15. Incropera, F. P., Dewitt, D. P., Bergman, T. L., & Lavine, A. S. (2010). Fundamentals of heat and mass transfer. New York: Wiley.Google Scholar
  16. Jorge, A. W., Gut, M., & Pinto, J. M. (2004). Optimal configuration design for plate heat exchangers. International Journal of Heat and Mass Transfer, 47, 4833–4848.CrossRefGoogle Scholar
  17. Kang, L., Liu, Y., & Liang, X. (2015). Multi-objective optimization of heat exchanger networks based on analysis of minimum temperature difference and accumulated CO2 emissions. Applied Thermal Engineering, 87, 736–748.CrossRefGoogle Scholar
  18. Kern, D. Q. (1950). Process heat transfer. Tokyo: McGraw-Hill Book Company, Inc.Google Scholar
  19. Lee, S. M., & Kim, K. Y. (2015). Multi-objective optimization of arc-shaped ribs in the channels of a printed circuit heat exchanger. International Journal of Thermal Sciences, 94, 1–8.CrossRefGoogle Scholar
  20. Lemouedda, A., Breuer, M., Franz, E., Botsch, T., & Delgado, A. (2010). Optimization of the angle of attack of delta-winglet vortex generators in a plate-fin-and-tube heat exchanger. International Journal of Heat and Mass Transfer, 53, 5386–5399.CrossRefGoogle Scholar
  21. Mishra, M., & Das, P. K. (2009). Thermo economic design-optimization of cross flow plate-fin heat exchanger using genetic algorithm. International Journal of Exergy, 6(6), 237–252.CrossRefGoogle Scholar
  22. Mishra, M., Das, P. K., & Sarangi, S. (2009). Second law based optimization of crossflow plate-fin heat exchanger using genetic algorithm. Applied Thermal Engineering, 29, 2983–2989.CrossRefGoogle Scholar
  23. Miyazaki, T., & Akisawa, A. (2009). The influence of heat exchanger parameters on the optimum cycle time of adsorption chillers. Applied Thermal Engineering, 29(13), 2708–2717.CrossRefGoogle Scholar
  24. Mohanty, A. K. (2016). Application of firefly algorithm for design optimization of a shell and tube heat exchanger from economic point of view. International Journal of Thermal Sciences, 102, 228–238.CrossRefGoogle Scholar
  25. Najafi, H., Najafi, B., & Hoseinpoori, P. (2011). Energy and cost optimization of a plate and fin heat exchanger using genetic algorithm. Applied Thermal Engineering, 31, 1839–1847.CrossRefGoogle Scholar
  26. Patel, V. K., & Rao, R. V. (2010). Design optimization of shell-and-tub heat exchanger using particle swarm optimization technique. Applied Thermal Engineering, 30(11–12), 1417–1425.CrossRefGoogle Scholar
  27. Peng, H., & Ling, X. (2008). Optimal design approach for the plate-fin heat exchangers using neural networks cooperated with genetic algorithms. Applied Thermal Engineering, 28, 642–650.MathSciNetCrossRefGoogle Scholar
  28. Rao, R. V., & Patel, V. K. (2013). Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm. Applied Mathematical Modelling, 37(3), 1147–1162.MathSciNetCrossRefGoogle Scholar
  29. Rao, R. V., & Patel, V. K. (2011). Optimization of mechanical draft counter flow wet cooling tower using artificial bee colony algorithm. Energy Conversion and Management, 52, 2611–2622.CrossRefGoogle Scholar
  30. Rao, R. V., & Patel, V. K. (2010). Thermodynamic optimization of cross flow plate-fin heat exchanger using a particle swarm optimization algorithm. International Journal of Thermal Sciences, 49, 1712–1721.CrossRefGoogle Scholar
  31. Rao, R. V., & Saroj, A. (2017a). Constrained economic optimization of shell-and-tube heat exchangers using elitist-Jaya algorithm. Energy, 128, 785–800.CrossRefGoogle Scholar
  32. Rao, R. V., & Saroj, A. (2017b). Economic optimization of shell-and-tube heat exchangers using Jaya algorithm with maintenance consideration. Applied Thermal Engineering, 116, 473–487.CrossRefGoogle Scholar
  33. Rao, R. V., & Saroj, A. (2017c). A self-adaptive multi-population based Jaya algorithm for engineering optimization. Swarm and Evolutionary Computation.  https://doi.org/10.1016/j.swevo.2017.04.008.CrossRefGoogle Scholar
  34. Rao, R. V., & Saroj, A. (2017d). Single objective and multi-objective design optimization of plate-fin heat exchangers using Jaya algorithm. Heat Transfer Engineering (in press).Google Scholar
  35. Ravagnani, M. A. S. S., Silva, A. P., Biscaia, E. C., & Caballero, J. A. (2009). Optimal design of shell-and-tube heat exchangers using particle swarm optimization. Industrial and Engineering Chemistry Research, 48(6), 2927–2935.CrossRefGoogle Scholar
  36. Reneaume, J. M., & Niclout, N. (2003). MINLP optimization of plate-fin heat exchangers. Chemical and Biochemical Engineering Quarterly, 17, 65–76.Google Scholar
  37. Sahin, A. S., Kilic, B., & Kilic, U. (2011). Design and economic optimization of shell-and-tube heat exchangers using artificial bee colony (ABC) algorithm. Energy Conversion and Management, 52(11), 1417–1425.Google Scholar
  38. Sanaye, S., & Hajabdollahi, H. (2010). Thermal-economic multi-objective optimization of plate-fin heat exchanger using genetic algorithm. Applied Energy, 87, 1893–1902.CrossRefGoogle Scholar
  39. Selbas, R., Kizilkan, O., & Reppich, M. (2006). A new design approach for shell-and-tube heat exchangers using genetic algorithms from economic point of view. Chemical Engineering and Processing, 45, 268–275.CrossRefGoogle Scholar
  40. Shah, R. K., & Bell, K. J. (2009). CRC handbook of thermal engineering. Florida: CRC Press.Google Scholar
  41. Shah, R. K., & Sekulic, D. P. (2003). Fundamentals of heat exchanger design. New York: Wiley.CrossRefGoogle Scholar
  42. Sinnot, R. K., Coulson, J. M., & Richardson, J. F. (1996). Chemical engineering design (Vol. 6). Boston MA: Butterworth-Heinemann.Google Scholar
  43. Taal, M., Bulatov, I., Klemes, J., & Stehlik, P. (2003). Cost estimation and energy price forecast for economic evaluation of retrofit projects. Applied Thermal Engineering, 23, 1819–1835.CrossRefGoogle Scholar
  44. Turgut, O. E., & Çoban, M. T. (2016). Thermal design of spiral heat exchangers and heat pipes through global best algorithm. Heat Mass Transfer, 1–18.  https://doi.org/10.1007/s00231-016-1861-y.
  45. Turgut, O. E., Turgut, M. S., & Coban, M. T. (2014). Design and economic investigation of shell and tube heat exchangers using improved intelligent tuned harmony search algorithm. Ain Shams Engineering Journal, 5(4), 1215–1231.CrossRefGoogle Scholar
  46. Wang, Z., & Li, Y. (2015). Irreversibility analysis for optimization design of plate fin heat exchangers using a multi-objective cuckoo search algorithm. Energy Conversion and Management, 101, 126–135.CrossRefGoogle Scholar
  47. Wong, J. Y. Q., Sharma, S., & Rangaiah, G. P. (2016). Design of shell-and-tube heat exchangers for multiple objectives using elitist non-dominated sorting genetic algorithm with termination criteria. Applied Thermal Engineering, 93, 888–899.CrossRefGoogle Scholar
  48. Xie, G. N., Sunden, B., & Wang, Q. W. (2008). Optimization of compact heat exchangers by a genetic algorithm. Applied Thermal Engineering, 28, 895–906.CrossRefGoogle Scholar
  49. Yousefi, M., Darus, A. N., & Mohammadi, H. (2012). An imperialist competitive algorithm for optimal design of plate-fin heat exchangers. International Journal of Heat and Mass Transfer, 55, 3178–3185.CrossRefGoogle Scholar
  50. Yu, X. C., Cui, Z. Q., & Yu, Y. (2008). Fuzzy optimal design of the plate-fin heat exchangers by particle swarm optimization, In Proceedings of the Fifth International Conference on Fuzzy Systems and Knowledge Discovery, Jinan, China (pp. 574–578).Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringS.V. National Institute of TechnologySuratIndia

Personalised recommendations