Finite Element Analysis of Cymbal Transducer from Porous Piezoceramics PZT-4 with Various Material Properties
- 1 Citations
- 624 Downloads
Abstract
The chapter deals with the finite element modeling of the disk piezoelectric transducer with cymbal-shaped end-caps. Under radial oscillations of piezoceramic disk this transducer generates axial oscillations with large amplitude thanks to more flexible metal end-caps. One of the factors contributing to the efficiency of transformating radial displacement into axial is the value of the transverse piezomodulus of the piezoceramic material. As it was recently found, porous piezoceramic with fully metallized pore surfaces exhibits a growth of the transverse piezomodulus with the porosity growth unlike ordinary piezoceramics, where the transverse piezomodulus decreases under the growth of porosity. This work investigates the oscillations of the cymbal piezoelectric transducer with the disk made of porous piezoceramic with fully metallized pore surfaces for various percentage of porosity. The results of the numerical experiments have confirmed the prospects of using new types of piezoceramic materials for a cymbal transducer.
Notes
Acknowledgements
This research was performed in the framework of the Indian-Russian DST-RFBR Collaborative project with DST grant number DST/INT/RFBR/IDIR/P-11/2016 and RFBR grant number RFBR 16-58-48009 IND_omi.
References
- 1.K.D. Rolt, J. Acoust. Soc. Amer. 87, 1340 (1990)CrossRefGoogle Scholar
- 2.Q.C. Xu, S. Yoshikawa, J.R. Belsick, R.E. Newnham, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 634 (1991)CrossRefGoogle Scholar
- 3.W.Y. Shin, W.H. Shin, I.A. Aksay, J. Am. Ceramic Soc. 80, 1073 (1997)Google Scholar
- 4.K. Onitsuka, A. Dogan, Q. Xu, S. Yoshikawa, R.E. Newnham, Ferroelectrics 156, 37 (1994)CrossRefGoogle Scholar
- 5.A. Dogan, Flextensional “Moonie and Cymbal” Actuators. Ph.D. Thesis, The Pennsylvania State University, University Park, PA, 362 p. (1994)Google Scholar
- 6.A. Dogan, K. Uchino, R.E. Newnham, I.E.E.E. Trans, Ultrason. Ferroelectr. Freq. Control 44, 597 (1997)CrossRefGoogle Scholar
- 7.A. Dogan, K. Uchino, R.E Newnham, In: Piezoelectric Materials: Advances in Science, Technology and Applications. NATO Science Series 3, eds. by C. Galassi, M. Dinescu, K. Uchino, M. Sayer, vol. 76, (Springer, Dordrecht, 2000), p. 357Google Scholar
- 8.R.E. Newnham, J. Zhang, R. Meyer, In: ISAF 2000. Proceedings of the XII IEEE International Symposium on Applications of Ferroelectrics, vol. 1, (2000), p. 29Google Scholar
- 9.P. Ochoa, J.L. Pons, M. Villegas, J.F. Fernandez, Sens. Actuators, A 132, 63 (2006)CrossRefGoogle Scholar
- 10.J.F. Fernandez, A. Dogan, J.T. Fielding, K. Uchino, R.E. Newnham, Sens. Actuators, A 65, 228 (1998)CrossRefGoogle Scholar
- 11.W. Lina, L. Denghua, W. Min, J. Meijian, J. Weijun, Integr. Ferroelectr. 80, 297 (2006)CrossRefGoogle Scholar
- 12.P. Ochoa, M. Villegas, J.F. Fernandez, Ferroelectrics 273, 315 (2002)CrossRefGoogle Scholar
- 13.E.A. Uzgur, A. Dogan, R.E. Newnham, Key Eng. Mater. 206–213(2), 1297 (2002)Google Scholar
- 14.L. Wang, D. Li, M. Wu, M. Jia, W. Ju, Integr. Ferroelectr. 80, 297 (2006)CrossRefGoogle Scholar
- 15.S. Guo, W. Li, L. Sang, C. Sun, X.-Z. Zhao, Integr. Ferroelectr. 78, 103 (2006)CrossRefGoogle Scholar
- 16.Z. Li, A. Huang, G. Luan, J. Zhang, Ultrasonics 44, e759 (2006)CrossRefGoogle Scholar
- 17.J.F. Tressler, W. Cao, K. Uchino, R.E. Newnham, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(5), 1363 (1998)CrossRefGoogle Scholar
- 18.P. Ochoa, J.L. Pons, M. Villegas, J.F. Fernandez, J. Eur. Ceram. Soc. 27, 1143 (2007)CrossRefGoogle Scholar
- 19.F. Bejarano, A. Feeney, R. Wallace, H. Simpson, M. Lucas, Ultrasonics 72, 24 (2016)CrossRefGoogle Scholar
- 20.A. Moure, M.A. Izquierdo Rodríguez, S.H. Rueda, A. Gonzalo, F. Rubio-Marcos, D.U. Cuadros, A. Pérez-Lepe, J.F. Fernández, Energy Convers. Manag. 112, 246 (2016)CrossRefGoogle Scholar
- 21.G. Yesner, M. Kuciej, A. Safari, A. Jasim, H. Wang, A. Maher, In: 2016 Joint IEEE International Symposium on the Applications of Ferroelectrics, European Conference on Application of Polar Dielectrics, and Piezoelectric Force Microscopy Workshop (ISAF/ECAPD/PFM), Darmstadt, Germany, 21–25 Aug 2016. IEEE Conference Publication (2016)Google Scholar
- 22.A.V. Nasedkin, A.A. Nasedkina, A.N. Rybyanets, In: Proceedings of the 2016 International Conference on “Physics, Mechanics of New Materials and Their Applications”, eds. by I.A. Parinov, S.-H. Chang, M.A. Jani (Nova Science Publishers, New York, 2017), p. 385Google Scholar
- 23.A. Nasedkin, A. Nasedkina, A. Rybyanets, Ferroelectrics 508, 100 (2017)CrossRefGoogle Scholar
- 24.A.V. Nasedkin, A.A. Nasedkina, A.N. Rybyanets In: Poromechanics VI. Proceedings of the Sixth Biot Conference on Poromechanics, Paris, France. 9–13 July 2017, eds. by M. Vandamme, P, Dangla, J.-M. Pereiram, S. Ghabezloo (Publ. ASCE, Reston, Virginia, USA, 2017), p. 724Google Scholar
- 25.E. Ringgaard, F. Lautzenhiser, L.M. Bierregaard, T. Zawada, E. Molz, Materials 8(12), 8877 (2015)CrossRefGoogle Scholar
- 26.A.N. Rybyanets, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1492 (2011)CrossRefGoogle Scholar
- 27.M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and Actuators: Finite Elements for Computational Multiphysics (Springer, Berlin, Heidelberg, New York, 2015)CrossRefGoogle Scholar
- 28.A.V. Nasedkin, Modeling of Piezoelectric Transducers in ANSYS (SFedU Press, Rostov-on-Don, 2015). (in Russian)Google Scholar
- 29.A.V. Nasedkin, In: Piezoceramic Materials and Devices, ed. by I.A. Parinov (Nova Science Publishers, New York, 2010), p. 177Google Scholar
- 30.A.V. Nasedkin, A.A. Nasedkina, Finite Element Modeling of Coupled Problems: Textbook (SFedU Press, Rostov-on-Don, 2015)Google Scholar
- 31.A.N. Rybyanets, A.A. Naumenko, In: Physics and Mechanics of New Materials and Their Applications, eds by I.A. Parinov, S.-H. Chang (Nova Science Publishers, New York, 2013), p. 3Google Scholar