Skip to main content

Finite Element Analysis of Cymbal Transducer from Porous Piezoceramics PZT-4 with Various Material Properties

  • Conference paper
  • First Online:
Advanced Materials (PHENMA 2017)

Abstract

The chapter deals with the finite element modeling of the disk piezoelectric transducer with cymbal-shaped end-caps. Under radial oscillations of piezoceramic disk this transducer generates axial oscillations with large amplitude thanks to more flexible metal end-caps. One of the factors contributing to the efficiency of transformating radial displacement into axial is the value of the transverse piezomodulus of the piezoceramic material. As it was recently found, porous piezoceramic with fully metallized pore surfaces exhibits a growth of the transverse piezomodulus with the porosity growth unlike ordinary piezoceramics, where the transverse piezomodulus decreases under the growth of porosity . This work investigates the oscillations of the cymbal piezoelectric transducer with the disk made of porous piezoceramic with fully metallized pore surfaces for various percentage of porosity . The results of the numerical experiments have confirmed the prospects of using new types of piezoceramic materials for a cymbal transducer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.D. Rolt, J. Acoust. Soc. Amer. 87, 1340 (1990)

    Article  Google Scholar 

  2. Q.C. Xu, S. Yoshikawa, J.R. Belsick, R.E. Newnham, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 634 (1991)

    Article  CAS  Google Scholar 

  3. W.Y. Shin, W.H. Shin, I.A. Aksay, J. Am. Ceramic Soc. 80, 1073 (1997)

    Google Scholar 

  4. K. Onitsuka, A. Dogan, Q. Xu, S. Yoshikawa, R.E. Newnham, Ferroelectrics 156, 37 (1994)

    Article  Google Scholar 

  5. A. Dogan, Flextensional “Moonie and Cymbal” Actuators. Ph.D. Thesis, The Pennsylvania State University, University Park, PA, 362 p. (1994)

    Google Scholar 

  6. A. Dogan, K. Uchino, R.E. Newnham, I.E.E.E. Trans, Ultrason. Ferroelectr. Freq. Control 44, 597 (1997)

    Article  Google Scholar 

  7. A. Dogan, K. Uchino, R.E Newnham, In: Piezoelectric Materials: Advances in Science, Technology and Applications. NATO Science Series 3, eds. by C. Galassi, M. Dinescu, K. Uchino, M. Sayer, vol. 76, (Springer, Dordrecht, 2000), p. 357

    Google Scholar 

  8. R.E. Newnham, J. Zhang, R. Meyer, In: ISAF 2000. Proceedings of the XII IEEE International Symposium on Applications of Ferroelectrics, vol. 1, (2000), p. 29

    Google Scholar 

  9. P. Ochoa, J.L. Pons, M. Villegas, J.F. Fernandez, Sens. Actuators, A 132, 63 (2006)

    Article  CAS  Google Scholar 

  10. J.F. Fernandez, A. Dogan, J.T. Fielding, K. Uchino, R.E. Newnham, Sens. Actuators, A 65, 228 (1998)

    Article  CAS  Google Scholar 

  11. W. Lina, L. Denghua, W. Min, J. Meijian, J. Weijun, Integr. Ferroelectr. 80, 297 (2006)

    Article  Google Scholar 

  12. P. Ochoa, M. Villegas, J.F. Fernandez, Ferroelectrics 273, 315 (2002)

    Article  CAS  Google Scholar 

  13. E.A. Uzgur, A. Dogan, R.E. Newnham, Key Eng. Mater. 206–213(2), 1297 (2002)

    Google Scholar 

  14. L. Wang, D. Li, M. Wu, M. Jia, W. Ju, Integr. Ferroelectr. 80, 297 (2006)

    Article  CAS  Google Scholar 

  15. S. Guo, W. Li, L. Sang, C. Sun, X.-Z. Zhao, Integr. Ferroelectr. 78, 103 (2006)

    Article  CAS  Google Scholar 

  16. Z. Li, A. Huang, G. Luan, J. Zhang, Ultrasonics 44, e759 (2006)

    Article  Google Scholar 

  17. J.F. Tressler, W. Cao, K. Uchino, R.E. Newnham, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(5), 1363 (1998)

    Article  Google Scholar 

  18. P. Ochoa, J.L. Pons, M. Villegas, J.F. Fernandez, J. Eur. Ceram. Soc. 27, 1143 (2007)

    Article  CAS  Google Scholar 

  19. F. Bejarano, A. Feeney, R. Wallace, H. Simpson, M. Lucas, Ultrasonics 72, 24 (2016)

    Article  Google Scholar 

  20. A. Moure, M.A. Izquierdo Rodríguez, S.H. Rueda, A. Gonzalo, F. Rubio-Marcos, D.U. Cuadros, A. Pérez-Lepe, J.F. Fernández, Energy Convers. Manag. 112, 246 (2016)

    Article  Google Scholar 

  21. G. Yesner, M. Kuciej, A. Safari, A. Jasim, H. Wang, A. Maher, In: 2016 Joint IEEE International Symposium on the Applications of Ferroelectrics, European Conference on Application of Polar Dielectrics, and Piezoelectric Force Microscopy Workshop (ISAF/ECAPD/PFM), Darmstadt, Germany, 21–25 Aug 2016. IEEE Conference Publication (2016)

    Google Scholar 

  22. A.V. Nasedkin, A.A. Nasedkina, A.N. Rybyanets, In: Proceedings of the 2016 International Conference on “Physics, Mechanics of New Materials and Their Applications”, eds. by I.A. Parinov, S.-H. Chang, M.A. Jani (Nova Science Publishers, New York, 2017), p. 385

    Google Scholar 

  23. A. Nasedkin, A. Nasedkina, A. Rybyanets, Ferroelectrics 508, 100 (2017)

    Article  CAS  Google Scholar 

  24. A.V. Nasedkin, A.A. Nasedkina, A.N. Rybyanets In: Poromechanics VI. Proceedings of the Sixth Biot Conference on Poromechanics, Paris, France. 9–13 July 2017, eds. by M. Vandamme, P, Dangla, J.-M. Pereiram, S. Ghabezloo (Publ. ASCE, Reston, Virginia, USA, 2017), p. 724

    Google Scholar 

  25. E. Ringgaard, F. Lautzenhiser, L.M. Bierregaard, T. Zawada, E. Molz, Materials 8(12), 8877 (2015)

    Article  CAS  Google Scholar 

  26. A.N. Rybyanets, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1492 (2011)

    Article  Google Scholar 

  27. M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and Actuators: Finite Elements for Computational Multiphysics (Springer, Berlin, Heidelberg, New York, 2015)

    Book  Google Scholar 

  28. A.V. Nasedkin, Modeling of Piezoelectric Transducers in ANSYS (SFedU Press, Rostov-on-Don, 2015). (in Russian)

    Google Scholar 

  29. A.V. Nasedkin, In: Piezoceramic Materials and Devices, ed. by I.A. Parinov (Nova Science Publishers, New York, 2010), p. 177

    Google Scholar 

  30. A.V. Nasedkin, A.A. Nasedkina, Finite Element Modeling of Coupled Problems: Textbook (SFedU Press, Rostov-on-Don, 2015)

    Google Scholar 

  31. A.N. Rybyanets, A.A. Naumenko, In: Physics and Mechanics of New Materials and Their Applications, eds by I.A. Parinov, S.-H. Chang (Nova Science Publishers, New York, 2013), p. 3

    Google Scholar 

Download references

Acknowledgements

This research was performed in the framework of the Indian-Russian DST-RFBR Collaborative project with DST grant number DST/INT/RFBR/IDIR/P-11/2016 and RFBR grant number RFBR 16-58-48009 IND_omi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna A. Nasedkina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nasedkin, A.V., Nasedkina, A.A., Rajagopal, A. (2018). Finite Element Analysis of Cymbal Transducer from Porous Piezoceramics PZT-4 with Various Material Properties. In: Parinov, I., Chang, SH., Gupta, V. (eds) Advanced Materials . PHENMA 2017. Springer Proceedings in Physics, vol 207. Springer, Cham. https://doi.org/10.1007/978-3-319-78919-4_42

Download citation

Publish with us

Policies and ethics