Finite Element Analysis of Cymbal Transducer from Porous Piezoceramics PZT-4 with Various Material Properties

Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 207)


The chapter deals with the finite element modeling of the disk piezoelectric transducer with cymbal-shaped end-caps. Under radial oscillations of piezoceramic disk this transducer generates axial oscillations with large amplitude thanks to more flexible metal end-caps. One of the factors contributing to the efficiency of transformating radial displacement into axial is the value of the transverse piezomodulus of the piezoceramic material. As it was recently found, porous piezoceramic with fully metallized pore surfaces exhibits a growth of the transverse piezomodulus with the porosity growth unlike ordinary piezoceramics, where the transverse piezomodulus decreases under the growth of porosity. This work investigates the oscillations of the cymbal piezoelectric transducer with the disk made of porous piezoceramic with fully metallized pore surfaces for various percentage of porosity. The results of the numerical experiments have confirmed the prospects of using new types of piezoceramic materials for a cymbal transducer.



This research was performed in the framework of the Indian-Russian DST-RFBR Collaborative project with DST grant number DST/INT/RFBR/IDIR/P-11/2016 and RFBR grant number RFBR 16-58-48009 IND_omi.


  1. 1.
    K.D. Rolt, J. Acoust. Soc. Amer. 87, 1340 (1990)CrossRefGoogle Scholar
  2. 2.
    Q.C. Xu, S. Yoshikawa, J.R. Belsick, R.E. Newnham, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 634 (1991)CrossRefGoogle Scholar
  3. 3.
    W.Y. Shin, W.H. Shin, I.A. Aksay, J. Am. Ceramic Soc. 80, 1073 (1997)Google Scholar
  4. 4.
    K. Onitsuka, A. Dogan, Q. Xu, S. Yoshikawa, R.E. Newnham, Ferroelectrics 156, 37 (1994)CrossRefGoogle Scholar
  5. 5.
    A. Dogan, Flextensional “Moonie and Cymbal” Actuators. Ph.D. Thesis, The Pennsylvania State University, University Park, PA, 362 p. (1994)Google Scholar
  6. 6.
    A. Dogan, K. Uchino, R.E. Newnham, I.E.E.E. Trans, Ultrason. Ferroelectr. Freq. Control 44, 597 (1997)CrossRefGoogle Scholar
  7. 7.
    A. Dogan, K. Uchino, R.E Newnham, In: Piezoelectric Materials: Advances in Science, Technology and Applications. NATO Science Series 3, eds. by C. Galassi, M. Dinescu, K. Uchino, M. Sayer, vol. 76, (Springer, Dordrecht, 2000), p. 357Google Scholar
  8. 8.
    R.E. Newnham, J. Zhang, R. Meyer, In: ISAF 2000. Proceedings of the XII IEEE International Symposium on Applications of Ferroelectrics, vol. 1, (2000), p. 29Google Scholar
  9. 9.
    P. Ochoa, J.L. Pons, M. Villegas, J.F. Fernandez, Sens. Actuators, A 132, 63 (2006)CrossRefGoogle Scholar
  10. 10.
    J.F. Fernandez, A. Dogan, J.T. Fielding, K. Uchino, R.E. Newnham, Sens. Actuators, A 65, 228 (1998)CrossRefGoogle Scholar
  11. 11.
    W. Lina, L. Denghua, W. Min, J. Meijian, J. Weijun, Integr. Ferroelectr. 80, 297 (2006)CrossRefGoogle Scholar
  12. 12.
    P. Ochoa, M. Villegas, J.F. Fernandez, Ferroelectrics 273, 315 (2002)CrossRefGoogle Scholar
  13. 13.
    E.A. Uzgur, A. Dogan, R.E. Newnham, Key Eng. Mater. 206–213(2), 1297 (2002)Google Scholar
  14. 14.
    L. Wang, D. Li, M. Wu, M. Jia, W. Ju, Integr. Ferroelectr. 80, 297 (2006)CrossRefGoogle Scholar
  15. 15.
    S. Guo, W. Li, L. Sang, C. Sun, X.-Z. Zhao, Integr. Ferroelectr. 78, 103 (2006)CrossRefGoogle Scholar
  16. 16.
    Z. Li, A. Huang, G. Luan, J. Zhang, Ultrasonics 44, e759 (2006)CrossRefGoogle Scholar
  17. 17.
    J.F. Tressler, W. Cao, K. Uchino, R.E. Newnham, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(5), 1363 (1998)CrossRefGoogle Scholar
  18. 18.
    P. Ochoa, J.L. Pons, M. Villegas, J.F. Fernandez, J. Eur. Ceram. Soc. 27, 1143 (2007)CrossRefGoogle Scholar
  19. 19.
    F. Bejarano, A. Feeney, R. Wallace, H. Simpson, M. Lucas, Ultrasonics 72, 24 (2016)CrossRefGoogle Scholar
  20. 20.
    A. Moure, M.A. Izquierdo Rodríguez, S.H. Rueda, A. Gonzalo, F. Rubio-Marcos, D.U. Cuadros, A. Pérez-Lepe, J.F. Fernández, Energy Convers. Manag. 112, 246 (2016)CrossRefGoogle Scholar
  21. 21.
    G. Yesner, M. Kuciej, A. Safari, A. Jasim, H. Wang, A. Maher, In: 2016 Joint IEEE International Symposium on the Applications of Ferroelectrics, European Conference on Application of Polar Dielectrics, and Piezoelectric Force Microscopy Workshop (ISAF/ECAPD/PFM), Darmstadt, Germany, 21–25 Aug 2016. IEEE Conference Publication (2016)Google Scholar
  22. 22.
    A.V. Nasedkin, A.A. Nasedkina, A.N. Rybyanets, In: Proceedings of the 2016 International Conference on “Physics, Mechanics of New Materials and Their Applications”, eds. by I.A. Parinov, S.-H. Chang, M.A. Jani (Nova Science Publishers, New York, 2017), p. 385Google Scholar
  23. 23.
    A. Nasedkin, A. Nasedkina, A. Rybyanets, Ferroelectrics 508, 100 (2017)CrossRefGoogle Scholar
  24. 24.
    A.V. Nasedkin, A.A. Nasedkina, A.N. Rybyanets In: Poromechanics VI. Proceedings of the Sixth Biot Conference on Poromechanics, Paris, France. 9–13 July 2017, eds. by M. Vandamme, P, Dangla, J.-M. Pereiram, S. Ghabezloo (Publ. ASCE, Reston, Virginia, USA, 2017), p. 724Google Scholar
  25. 25.
    E. Ringgaard, F. Lautzenhiser, L.M. Bierregaard, T. Zawada, E. Molz, Materials 8(12), 8877 (2015)CrossRefGoogle Scholar
  26. 26.
    A.N. Rybyanets, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1492 (2011)CrossRefGoogle Scholar
  27. 27.
    M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and Actuators: Finite Elements for Computational Multiphysics (Springer, Berlin, Heidelberg, New York, 2015)CrossRefGoogle Scholar
  28. 28.
    A.V. Nasedkin, Modeling of Piezoelectric Transducers in ANSYS (SFedU Press, Rostov-on-Don, 2015). (in Russian)Google Scholar
  29. 29.
    A.V. Nasedkin, In: Piezoceramic Materials and Devices, ed. by I.A. Parinov (Nova Science Publishers, New York, 2010), p. 177Google Scholar
  30. 30.
    A.V. Nasedkin, A.A. Nasedkina, Finite Element Modeling of Coupled Problems: Textbook (SFedU Press, Rostov-on-Don, 2015)Google Scholar
  31. 31.
    A.N. Rybyanets, A.A. Naumenko, In: Physics and Mechanics of New Materials and Their Applications, eds by I.A. Parinov, S.-H. Chang (Nova Science Publishers, New York, 2013), p. 3Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.I. I. Vorovich Institute of Mathematics, Mechanics and Computer Science, Southern Federal UniversityRostov-on-DonRussia
  2. 2.Department of Civil EngineeringIndian Institute of TechnologyHyderabadIndia

Personalised recommendations