Skip to main content

Thermoelectric Converter Based on Metal–Dielectric–Semiconductor–Metal Structures and Its Experimental Investigation

  • Conference paper
  • First Online:
  • 937 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 207))

Abstract

The thermoelectric converter of field-effect transistor type, based on metal–dielectric–semiconductor–metal (MDSM) structures, is proposed, in which a thermal energy transforms into the potential energy of a charged gate capacitor. Experiments with field-effect transistors in a circuit with diodes were performed upon the action on the circuit a sinusoidal electric signal with bias. The excess of the power, released to the elements of the circuit, over the power consumption by tens of percents was obtained, which in a whole confirms the correctness of the proposed concept of the conversion of heat into electricity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.-C. Zheng, Front. Phys. China 3, 269 (2008)

    Article  Google Scholar 

  2. A.V. Dmitriev, I.P. Zvyagin, Phys. Usp. 53, 789 (2010)

    Article  CAS  Google Scholar 

  3. M. Nicolau, International Application. WO03023871 (A2) (2003)

    Google Scholar 

  4. S. Donsa, S. Andergassen, K. Held, Phys. Rev. B 89, 12503 (2014)

    Article  Google Scholar 

  5. D. Wasserman, S.A. Lyon, M. Hadjipanayi, A. Maciel, J.F. Ryan, Appl. Phys. Lett. 83, 5050 (2003)

    Article  CAS  Google Scholar 

  6. H. Zhang, Y. Liu, X. Ye, Y. Chen, J. Appl. Phys. 114, 244308 (2013)

    Article  Google Scholar 

  7. H. Lee, D. Vashaee, D.Z. Wang, M.S. Dresselhaus, Z.F. Ren, G. Chen, J. Appl. Phys. 107, 094308 (2010)

    Article  Google Scholar 

  8. P. Thiyagarajan, M.-W. Oh, J.-C. Yoon, J.-H. Jang, Appl. Phys. Lett. 105, 033905 (2014)

    Article  Google Scholar 

  9. J.P. Pekola, F. Giazotto, O.-P. Saira, Phys. Rev. Lett. 98, 037201 (2007)

    Article  Google Scholar 

  10. O.-P. Saira, M. Meschke, F. Giazotto, A.M. Savin, M. Mottonen, J.P. Pekola, Phys. Rev. Lett. 99, 027203 (2007)

    Article  Google Scholar 

  11. L.S. Lunin, G.Y. Karapet’yan, V.G. Dneprovskii, V.F. Kataev, Tech. Phys. 58, 1619 (2013)

    Article  CAS  Google Scholar 

  12. G.Y. Karapetyan, V.G. Dneprovski, I.A. Parinov, in: Advanced Materials. Studies and Applications, ed. by I.A. Parinov, S.-H. Chang, S. Theerakulpisut (Nova Science Publishers, 2015), p. 209

    Google Scholar 

  13. G.Y. Karapetyan, V.G. Dneprovski, I.A. Parinov, G. Parchi, in: Advanced Materials: Manufacturing, Physics, Mechanics and Applications, Springer Proceedings in Physics, vol. 175, ed. by I.A. Parinov, S.-H. Chang, V.Y. Topolov (2016), p. 329

    Google Scholar 

  14. K. Seeger, in: Semiconductor Physics, Chapter: Semiconductor Statistics (Springer, 1989), p. 34

    Google Scholar 

  15. V.A. Akop’yan, G.Y. Karapet’yan, Meas. Tech. 59, 979 (2016)

    Article  Google Scholar 

  16. V.M. Egorov, V.V. Kaminskii, M.M. Kazanin, S.M. Soloviev, A.V. Golubkov, Tech. Phys. Lett. 39, 650 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study has been performed at partial financial support of the Russian Foundation for Basic Research (grant No. 16-08-00740). I. A. Parinov acknowledges financial support of the Russian Ministry of Education and Sciences into framework of the “Organization of Scientific Research” Government Assignment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ya. Karapetyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karapetyan, G.Y., Parinov, I.A. (2018). Thermoelectric Converter Based on Metal–Dielectric–Semiconductor–Metal Structures and Its Experimental Investigation. In: Parinov, I., Chang, SH., Gupta, V. (eds) Advanced Materials . PHENMA 2017. Springer Proceedings in Physics, vol 207. Springer, Cham. https://doi.org/10.1007/978-3-319-78919-4_41

Download citation

Publish with us

Policies and ethics