Skip to main content

On Free Vibration Analysis of FGPM Cylindrical Shell Excited Under d15 Effect

  • Conference paper
  • First Online:
Advanced Materials (PHENMA 2017)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 207))

  • 922 Accesses

Abstract

Piezoelectric vibrating shell is the major component of the various equipments related to mechanical, nuclear, aeronautical and aerospace engineering. Shells especially exhibit certain effects that are not present in beams or even in plates. Analysis of vibrational characteristics of functionally graded piezoelectric circular cylindrical shell is quit complex than beams and plates. This is because the coupling of vibration of shell between the three directions can no longer be neglected. Dynamic analysis of FGPM continuum is quite complex, due to the synchronization of electric and mechanical terms. Closed form solution for complex FGPM model by analytical method is quite a tedious task. Approximation method provides an alternate path for solving such kind of problems. Paper contains free vibration analysis of a full three dimensional FGPM cylindrical shell model excited under d15 effect. Shear piezoelectric coupling coefficient d15 is much higher than the other piezoelectric coefficients d31 or d33. Rayleigh–Ritz, an approximation method, is used to obtain the eigenvectors and eigenfrequencies for FGPM cylindrical shell. Orthogonal polynomial functions are used with Rayleigh–Ritz method to formulate the linear eigenvalue problem. Higher order polynomials are generated by Gram–Schmidt method. MATLAB 2015a Symbolic Toolbox is used for calculation and obtained solution is validated using commercial finite element software COMSOL Multiphysics 2014.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.B. Bhat, J. Sound Vibr. 102, 493 (1985)

    Article  Google Scholar 

  2. IEEE Std., IEEE Standard on Piezoelectricity (The Institute of Electrical and Electronics Engineers, New York, 1987)

    Google Scholar 

  3. S.K. Parashar, U.V. Wagner, P. Hagedorn, J. Sound Vibr. 285(4), 989 (2005)

    Article  Google Scholar 

  4. W.P. Mason, B. Hans, Phys. Today 4, 23 (1951)

    Article  Google Scholar 

  5. S.K. Parashar, U.V. Wagner, P. Hagedorn, Nonlinear Dyn. 37(3), 181 (2004)

    Article  Google Scholar 

  6. S.K. Parashar, A. Kumar, Arch. Appl. Mech. 85(5), 641 (2015)

    Article  Google Scholar 

  7. A. Graham, Kronecker Products and Matrix Calculus: With Applications (Wiley, NY, 1982), p. 130

    Google Scholar 

  8. M.W. Hooker, Properties of PZT-Based Piezoelectric Ceramics Between −150 and 250 °C (NASA Langley Research Center, Hampton, 1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Gahlaut .

Editor information

Editors and Affiliations

Appendix 1

Appendix 1

Expressions for the matrices \(\Gamma _{piezo}\), \(\Gamma _{dielectric}\) and \(\Gamma _{mech}\) are given below:

$$\begin{aligned}\Gamma _{piezo} & = \left[ {\begin{array}{*{20}c} {\left[ {e_{31} \left( r \right)} \right]\left\{ {\Psi _{1,r} } \right\}\left\{ {\Psi _{4,z} } \right\}^{T} + \frac{1}{r}\left[ {e_{31} \left( r \right)} \right]\left\{ {\Psi _{1} } \right\}\left\{ {\Psi _{4,z} } \right\}^{T} + \left[ {e_{15} \left( r \right)} \right]\left\{ {\Psi _{1,z} } \right\}\left\{ {\Psi _{4,r} } \right\}^{T} } \\ {\frac{1}{r}\left[ {e_{31} \left( r \right)} \right]\left\{ {\Psi _{2,\theta } } \right\}\left\{ {\Psi _{4,z} } \right\}^{T} + \frac{1}{r}\left[ {e_{15} \left( r \right)} \right]\left\{ {\Psi _{2,z} } \right\}\left\{ {\Psi _{4,\theta } } \right\}^{T} } \\ {\left[ {e_{33} \left( r \right)} \right]\left\{ {\Psi _{3,z} } \right\}\left\{ {\Psi _{4,z} } \right\}^{T} + + \left[ {e_{15} \left( r \right)} \right]\left\{ {\Psi _{3,r} } \right\}\left\{ {\Psi _{4,r} } \right\}^{T} + \frac{1}{{r^{2} }}\left[ {e_{15} \left( r \right)} \right]\left\{ {\Psi _{3,\theta } } \right\}\left\{ {\Psi _{4,\theta } } \right\}^{T} } \\ \end{array} } \right] \\\Gamma _{dielectric} & = \left[ { - \left[ {\varepsilon_{11}^{S} \left( r \right)} \right]\left\{ {\Psi _{4,r} } \right\}\left\{ {\Psi _{4,r} } \right\}^{T} - \frac{1}{{r^{2} }}\left[ {\varepsilon_{11}^{S} \left( r \right)} \right]\left\{ {\Psi _{4,\theta } } \right\}\left\{ {\Psi _{4,\theta } } \right\}^{T} - \left[ {\varepsilon_{33}^{S} \left( r \right)} \right]\left\{ {\Psi _{4,z} } \right\}\left\{ {\Psi _{4,z} } \right\}^{T} } \right] \\ \end{aligned}$$
$$\Gamma _{mech} = \left[ {\begin{array}{*{20}l} {\frac{1}{{r^{2} }}\left[ {C_{11}^{E} \left( r \right)} \right]\left\{ {\Psi _{1} } \right\}\left\{ {\Psi _{1} } \right\}^{T} } \hfill & {} \hfill & {\frac{1}{{r^{2} }}\left[ {C_{11}^{E} \left( r \right)} \right]\left\{ {\Psi _{1} } \right\}\left\{ {\Psi _{2,\theta } } \right\}^{T} } \hfill & {} \hfill & {\frac{1}{r}\left[ {C_{13}^{E} \left( r \right)} \right]\left\{ {\Psi _{1} } \right\}\left\{ {\Psi _{3,z} } \right\}^{T} } \hfill \\ { + \frac{2}{r}\left[ {C_{12}^{E} \left( r \right)} \right]\left\{ {\Psi _{1} } \right\}\left\{ {\Psi _{1,r} } \right\}^{T} } \hfill & {} \hfill & { + \frac{1}{r}\left[ {C_{12}^{E} \left( r \right)} \right]\left\{ {\Psi _{1,r} } \right\}\left\{ {\Psi _{2,\theta } } \right\}^{T} } \hfill & {} \hfill & { + \left[ {C_{13}^{E} \left( r \right)} \right]\left\{ {\Psi _{1,r} } \right\}\left\{ {\Psi _{3,z} } \right\}^{T} } \hfill \\ { + \left[ {C_{11}^{E} \left( r \right)} \right]\left\{ {\Psi _{1,r} } \right\}\left\{ {\Psi _{1,r} } \right\}^{T} } \hfill & {} \hfill & { - \frac{1}{{r^{2} }}\left[ {C_{66}^{E} \left( r \right)} \right]\left\{ {\Psi _{1,\theta } } \right\}\left\{ {\Psi _{2} } \right\}^{T} } \hfill & {} \hfill & { + \left[ {C_{44}^{E} \left( r \right)} \right]\left\{ {\Psi _{1,z} } \right\}\left\{ {\Psi _{3,r} } \right\}^{T} } \hfill \\ { + \left[ {C_{44}^{E} \left( r \right)} \right]\left\{ {\Psi _{1,z} } \right\}\left\{ {\Psi _{1,z} } \right\}^{T} } \hfill & {} \hfill & { + \frac{1}{r}\left[ {C_{66}^{E} \left( r \right)} \right]\left\{ {\Psi _{1,\theta } } \right\}\left\{ {\Psi _{2,r} } \right\}^{T} } \hfill & {} \hfill & {} \hfill \\ { + \frac{1}{{r^{2} }}\left[ {C_{66}^{E} \left( r \right)} \right]\left\{ {\Psi _{1,\theta } } \right\}\left\{ {\Psi _{1,\theta } } \right\}^{T} } \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill \\ {\frac{1}{{r^{2} }}\left[ {C_{11}^{E} \left( r \right)} \right]\left\{ {\Psi _{2,\theta } } \right\}\left\{ {\Psi _{1} } \right\}^{T} } \hfill & {} \hfill & {\frac{1}{{r^{2} }}\left[ {C_{11}^{E} \left( r \right)} \right]\left\{ {\Psi _{2,\theta } } \right\}\left\{ {\Psi _{2,\theta } } \right\}^{T} } \hfill & {} \hfill & {\frac{1}{r}\left[ {C_{13}^{E} \left( r \right)} \right]\left\{ {\Psi _{2,\theta } } \right\}\left\{ {\Psi _{3,z} } \right\}^{T} } \hfill \\ { + \frac{1}{r}\left[ {C_{12}^{E} \left( r \right)} \right]\left\{ {\Psi _{2,\theta } } \right\}\left\{ {\Psi _{1,r} } \right\}^{T} } \hfill & {} \hfill & { + \left[ {C_{44}^{E} \left( r \right)} \right]\left\{ {\Psi _{2,z} } \right\}\left\{ {\Psi _{2,z} } \right\}^{T} } \hfill & {} \hfill & { + \frac{1}{r}\left[ {C_{44}^{E} \left( r \right)} \right]\left\{ {\Psi _{2,z} } \right\}\left\{ {\Psi _{3,\theta } } \right\}^{T} } \hfill \\ { - \frac{1}{{r^{2} }}\left[ {C_{66}^{E} \left( r \right)} \right]\left\{ {\Psi _{2} } \right\}\left\{ {\Psi _{1,\theta } } \right\}^{T} } \hfill & {} \hfill & { + \frac{1}{{r^{2} }}\left[ {C_{66}^{E} \left( r \right)} \right]\left\{ {\Psi _{2} } \right\}\left\{ {\Psi _{2} } \right\}^{T} } \hfill & {} \hfill & {} \hfill \\ { + \frac{1}{r}\left[ {C_{66}^{E} \left( r \right)} \right]\left\{ {\Psi _{2,r} } \right\}\left\{ {\Psi _{1,\theta } } \right\}^{T} } \hfill & {} \hfill & { + \left[ {C_{66}^{E} \left( r \right)} \right]\left\{ {\Psi _{2,r} } \right\}\left\{ {\Psi _{2,r} } \right\}^{T} } \hfill & {} \hfill & {} \hfill \\ {} \hfill & {} \hfill & { - \frac{1}{r}\left[ {C_{66}^{E} \left( r \right)} \right]\left\{ {\Psi _{2} } \right\}\left\{ {\Psi _{2,r} } \right\}^{T} } \hfill & {} \hfill & {} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill \\ {\frac{1}{r}\left[ {C_{13}^{E} \left( r \right)} \right]\left\{ {\Psi _{3,z} } \right\}\left\{ {\Psi _{1} } \right\}^{T} } \hfill & {} \hfill & {\frac{1}{r}\left[ {C_{13}^{E} \left( r \right)} \right]\left\{ {\Psi _{3,z} } \right\}\left\{ {\Psi _{2,\theta } } \right\}^{T} } \hfill & {} \hfill & {\left[ {C_{44}^{E} \left( r \right)} \right]\left\{ {\Psi _{3,r} } \right\}\left\{ {\Psi _{3,r} } \right\}^{T} } \hfill \\ { + \left[ {C_{13}^{E} \left( r \right)} \right]\left\{ {\Psi _{3,z} } \right\}\left\{ {\Psi _{1,r} } \right\}^{T} } \hfill & {} \hfill & { + \frac{1}{r}\left[ {C_{44}^{E} \left( r \right)} \right]\left\{ {\Psi _{3,\theta } } \right\}\left\{ {\Psi _{2,z} } \right\}^{T} } \hfill & {} \hfill & { + \left[ {C_{33}^{E} \left( r \right)} \right]\left\{ {\Psi _{3,z} } \right\}\left\{ {\Psi _{3,z} } \right\}^{T} } \hfill \\ { + \left[ {C_{44}^{E} \left( r \right)} \right]\left\{ {\Psi _{3,r} } \right\}\left\{ {\Psi _{1,z} } \right\}^{T} } \hfill & {} \hfill & {} \hfill & {} \hfill & { + \frac{1}{{r^{2} }}\left[ {C_{44}^{E} \left( r \right)} \right]\left\{ {\Psi _{3,\theta } } \right\}\left\{ {\Psi _{3,\theta } } \right\}^{T} } \hfill \\ \end{array} } \right]$$

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parashar, S.K., Gahlaut, A. (2018). On Free Vibration Analysis of FGPM Cylindrical Shell Excited Under d15 Effect. In: Parinov, I., Chang, SH., Gupta, V. (eds) Advanced Materials . PHENMA 2017. Springer Proceedings in Physics, vol 207. Springer, Cham. https://doi.org/10.1007/978-3-319-78919-4_25

Download citation

Publish with us

Policies and ethics