Skip to main content

Growth and Study of Zinc Oxide Nanorods Arrays on Piezoelectric Substrates

  • Conference paper
  • First Online:
Advanced Materials (PHENMA 2017)

Abstract

Our studies have shown the possibility of using the thermal synthesis method from Zn vapors to obtain ZnO nanorods arrays as a sensitive element for UV radiation SAW sensors. The piezoelectric properties of the LiNbO3 substrate typically degrade upon nanorods growth at elevated temperature. This limitation is solved by using additional annealing of prepared structure at 550 °C in an oxygen atmosphere. The obtained ZnO NRs were investigated by scanning electron microscopy and photoluminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.B. Djurišić, Y.H. Leung, Small 2, 944 (2006)

    Article  Google Scholar 

  2. C.-Y. Chen, M.-W. Chen, J.-J. Ke, C.-A. Lin, J.R.D. Retamal, J.-H. He, Surface effects on optical and electrical properties of ZnO nanostructures. Pure Appl. Chem. 82, 2055 (2010)

    Google Scholar 

  3. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)

    Article  CAS  Google Scholar 

  4. A. Nadarajah, R.C. Word, J. Meiss, R. Könenkamp, Nano Lett. 8, 534 (2008)

    Article  CAS  Google Scholar 

  5. X.W. Sun, J.Z. Huang, J.X. Wang, Z. Xu, Nano Lett. 8, 1219 (2008)

    Article  CAS  Google Scholar 

  6. J.Y. Park, D.E. Song, S.S. Kim, Nanotechnology 19, 105503 (2008)

    Article  Google Scholar 

  7. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nat. Mater. 4, 455 (2005)

    Article  CAS  Google Scholar 

  8. S.P. Ghosh, K.C. Das, N. Tripathy, G. Bose, D.H. Kim, T.I. Lee, J.M. Myoung, J.P. Kar, IOP Conf. Ser. Mater. Sci. Eng. 115, 012035 (2016)

    Article  Google Scholar 

  9. Y. Qin, X. Wang, Z.L. Wang, Nature 451, 809 (2008)

    Article  CAS  Google Scholar 

  10. A.S. Bagdasarian, V.G. Dneprovski, G.Y. Karapetyan, S.A. Bagdasaryan, in Piezoelectric and Related Materials: Research and Applications, ed. by I.A. Parinov (Nova Science Publishers, New York, 2012), p. 189

    Google Scholar 

  11. P. Sharma, K. Sreenivas, Appl. Phys. Lett. 83, 3617 (2003)

    Article  CAS  Google Scholar 

  12. P. Sharma, S. Kumar, K. Sreenivas, J. Mater. Res. 18, 545 (2003)

    Article  CAS  Google Scholar 

  13. A.A. Mohanan, R. Parthiban, N. Ramakrishnan, J. Micromech. Microeng. 26, 025017 (2016)

    Article  Google Scholar 

  14. D.-L. Chenga, K.-S. Kaoa, C.-H. Loa, C.-H. Liangb, L.-P. Chanc, C.-W. Tsung, Y.-Y. Li, Ultraviolet sensing system using ZnO based surface acoustic wave oscillator. Proceedings of the 3rd International Conference on Industrial Application Engineering. vol. 435 (2015)

    Google Scholar 

  15. W.-S. Wang, T.-T. Wu, T.-H. Chou, Y.-Y. Chen. A, ZnO nanorod-based SAW oscillator system for ultraviolet detection. Nanotechnology 20, 135503 (2009)

    Article  Google Scholar 

  16. R. Fachberger, G. Bruckner, G. Knoll, R. Hauser, J. Biniasch, L. Reindl, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1427 (2004)

    Article  Google Scholar 

  17. J. Hornsteiner, E. Born, G. Fischerauer, E. Riha, in Proceedings 1998 IEEE International Frequency Control Symposium (1998), p. 615

    Google Scholar 

  18. N.V. Lyanguzov, E.M. Kaydashev, I.N. Zakharchenko, O.A. Bunina, Tech. Phys. Lett. 39, 767 (2013)

    Article  CAS  Google Scholar 

  19. P.K. Samanta, A.K. Bandyopadhyay, Appl. Nanosci. 2, 111 (2012)

    Article  CAS  Google Scholar 

  20. V.I. Pushkariov, A.L. Nikolaev, E.M. Kaidashev, in Advanced Materials—Studies and Applications, ed. by I.A. Parinov, S.-H. Chang, S. Theerakulpisut (Nova Science Publishers, New York, 2015), p. 51

    Google Scholar 

  21. D.A. Zhilin, N.V. Lyanguzov, V.I. Pushkariov, L.A. Nikolaev, V.E. Kaydashev, E. M. Kaidashev, in Advanced Materials—Studies and Applications, ed. by I.A. Parinov, S.-H. Chang, S. Theerakulpisut (Nova Science Publishers, New York, 2015), p. 57

    Google Scholar 

  22. G.Y. Karapetyan, V.E. Kaydashev, D.A. Zhilin, T.A. Minasyan, K.G. Abdulvakhidov, E.M. Kaidashev, Use of multiple acoustic reflections to enhance SAW UV photo-detector sensitivity. Smart Mater. Struct. 26, 035029 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research work is supported by the Russian Education and Science Ministry, the project No. 16.5405.2017/8.9 and Grant RFBR-MOST № 16-58-52013 MNT_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Zhilin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhilin, D.A., Karapetyan, G.Y., Kutepov, M.E., Minasyan, T.A., Yatsenko, V.I., Kaidashev, E.M. (2018). Growth and Study of Zinc Oxide Nanorods Arrays on Piezoelectric Substrates. In: Parinov, I., Chang, SH., Gupta, V. (eds) Advanced Materials . PHENMA 2017. Springer Proceedings in Physics, vol 207. Springer, Cham. https://doi.org/10.1007/978-3-319-78919-4_2

Download citation

Publish with us

Policies and ethics