Abstract
Although NoC-based systems with many cores are commercially available, their multi-hop nature has become a bottleneck on scaling performance and energy consumption parameters. Alternatively, hybrid wireless NoC provides a postern by exploiting single-hop express links for long-distance communications. Also, there is a common wisdom that grid-like mesh is the most stable topology in conventional designs. That is why almost all of the emerging architectures had been relying on this topology as well. In this paper, first we challenge the efficiency of the grid-like mesh in emerging systems. Then, we propose HoneyWiN, a hybrid reconfigurable wireless NoC architecture that relies on the honeycomb topology. The simulation results show that on average HoneyWiN saves 17% of energy consumption while increases the network throughput by 10% compared to its wireless mesh counterpart.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Benini, L., De Micheli, G.: Networks on chips: a new SoC paradigm. Computer 35(1), 70–78 (2002)
Karkar, A., Mak, T., Tong, K.F., Yakovlev, A.: A survey of emerging interconnects for on-chip efficient multicast and broadcast in many-cores. IEEE Circuits Syst. Mag. 16(1), 58–72 (2016)
Rezaei, A., Zhao, D., Daneshtalab, M., Zhou, H.: Multi-objective task mapping approach for wireless NoC in dark silicon age. In: Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP), pp. 589–592 (2017)
Rezaei, A., Daneshtalab, M., Zhao, D., Modarressi, M.: SAMi: self-aware migration approach for congestion reduction in NoC-based MCSoC. In: IEEE International System-on-Chip Conference (SOCC), pp. 145–150 (2016)
Abadal, S., Cabellos-Aparicio, A., Alarcon, E., Torrellas, J.: WiSync: an architecture for fast synchronization through on-chip wireless communication. In: International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pp. 3–17 (2016)
Gade, S.H., Deb, S.: HyWin: hybrid wireless NoC with sandboxed sub-networks for CPU/GPU architectures. IEEE Trans. Comput. 66(7), 1145–1158 (2017)
Ganguly, A., Chang, K., Deb, S., Pande, P.P., Belzer, B., Teuscher, C.: Scalable hybrid wireless network-on-chip architectures for multicore systems. IEEE Trans. Comput. 60(10), 1485–1502 (2011)
Mineo, A., Palesi, M., Ascia, G., Catania, V.: An adaptive transmitting power technique for energy efficient mm-wave wireless NoCs. In: Design, Automation and Test in Europe (DATE), p. 271 (2014)
Kawasaki, K., Akiyama, Y., Komori, K., Uno, M., Takeuchi, H., Itagaki, T., Hino, Y., Kawasaki, Y., Ito, K., Hajimiri, A.: A millimeter-wave intra-connect solution. IEEE J. Solid-State Circuits 45(12), 2655–2666 (2010)
Yu, X., Sah, S.P., Rashtian, H., Mirabbasi, S., Pande, P.P., Heo, D.: A 1.2-pj/bit 16-gb/s 60-ghz ook transmitter in 65-nm cmos for wireless network-on-chip. IEEE Trans. Microw. Theory Tech. 62(10), 2357–2369 (2014)
Wu, H., Nan, L., Tam, S.W., Hsieh, H.H., Jou, C., Reinman, G., Cong, J., Chang, M.C.F.: A 60GHz on-chip RF-interconnect with \(\lambda \)/4 coupler for 5Gbps bi-directional communication and multi-drop arbitration. In: IEEE Custom Integrated Circuits Conference (CICC), pp. 1–4 (2012)
Chang, M.F., Cong, J., Kaplan, A., Naik, M., Reinman, G., Socher, E., Tam, S.W.: CMP network-on-chip overlaid with multi-band RF-interconnect. In: International Symposium on High Performance Computer Architecture (HPCA), pp. 191–202 (2008)
Ito, H., Kimura, M., Miyashita, K., Ishii, T., Okada, K., Masu, K.: A bidirectional- and multi-drop-transmission-line interconnect for multipoint-to-multipoint on-chip communications. IEEE J. Solid-State Circuits 43, 1020–1029 (2008)
Hu, J., Xu, J., Huang, M., Wu, H.: A 25-Gbps 8-ps/mm transmission line based interconnect for on-chip communications in multi-core chips. In: IEEE International Microwave Symposium Digest (IMS), pp. 1–4 (2013)
Nakajima, K., Maruyama, A., Kohtani, M., Sugiura, T., Otobe, E., Lee, J., Cho, S., Kwak, K., Lee, J., Yoshimasu, T., Fujishima, M.: 23Gbps 9.4pj/bit 80/100GHz band CMOS transceiver with on-board antenna for short-range communication. In: IEEE Asian Solid-State Circuits Conference (A-SSCC), pp. 173–176 (2014)
Byeon, C.W., Yoon, C.H., Park, C.S.: A 67-mw 10.7-Gb/s 60-GHz OOK CMOS transceiver for short-range wireless communications. IEEE Trans. Microw. Theory Tech. 61, 3391–3401 (2013)
Karkar, A., Al-Dujaily, R., Yakovlev, A., Tong, K., Mak, T.: Surface wave communication system for on-chip and off-chip interconnects. In: International Workshop on Network on Chip Architectures (NoCArc), pp. 11–16 (2012)
Liang, Y., Yu, H., Zhao, J., Yang, W., Wang, Y.: An energy efficient and low cross-talk CMOS sub-THz i/o with surface-wave modulator and interconnect. In: IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), pp. 110–115 (2015)
Hanson, G.W.: Fundamental transmitting properties of carbon nanotube antennas. IEEE Trans. Antennas Propag. 53(11), 3426–3435 (2005)
Saxena, S., Manur, D.S., Shamim, M.S., Ganguly, A.: A folded wireless network-on-chip using graphene based THz-band antennas. In: International Conference on Nanoscale Computing and Communication (NanoCom), p. 29 (2017)
Balasubramaniam, S., Kangasharju, J.: Realizing the internet of nano things: challenges, solutions, and applications. Computer 46(2), 62–68 (2013)
Vien, Q.T., Agyeman, M.O., Le, T.A., Mak, T.: On the nanocommunications at THz band in Graphene-enabled wireless network-on-chip. In: Mathematical Problems in Engineering, Article ID 9768604 (2017)
Hu, W.H., Wang, C., Bagherzadeh, N.: Design and analysis of a mesh-based wireless network-on-chip. J. Supercomput. 71(8), 2830–2846 (2015)
DiTomaso, D., Kodi, A., Kaya, S., Matolak, D.: iWISE: inter-router wireless scalable express channels for network-on-chips (NoCs) architecture. In: Annual Symposium on High Performance Interconnects (HOTI), pp. 11–18 (2011)
More, A., Taskin, B.: A unified design methodology for a hybrid wireless 2-D NoC. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 640–643 (2012)
Rezaei, A., Daneshtalab, M., Safaei, F., Zhao, D.: Hierarchical approach for hybrid wireless network-on-chip in many-core era. Comput. Electr. Eng. 51(C), 225–234 (2016)
Stojmenovic, I.: Honeycomb networks: topological properties and communication algorithms. IEEE Trans. Parallel Distrib. Syst. 8(10), 1036–1042 (1997)
Yin, A.W., Xu, T.C., Liljeberg, P., Tenhunen, H.: Explorations of honeycomb topologies for network-on-chip. In: IFIP International Conference on Network and Parallel Computing (NPC), pp. 73–79 (2009)
Catania, V., Mineo, A., Monteleone, S., Palesi, M., Patti, D.: Cycle-accurate network on chip simulation with noxim. ACM Trans. Model. Comput. Simul. 27(1), 4 (2016)
Kahng, A.B., Li, B., Peh, L.S., Samadi, K.: Orion 2.0: a power-area simulator for interconnection networks. IEEE Trans. Very Large Scale Integr. VLSI Syst. 20(1), 191–196 (2012)
Catania, V., Mineo, A., Monteleone, S., Palesi, M., Patti, D.: Energy efficient transceiver in wireless network on chip architectures. In: Design, Automation and Test in Europe (DATE), pp. 1321–1326 (2016)
Rezaei, A., Daneshtalab, M., Palesi, M., Zhao, D.: Efficient congestion-aware scheme for wireless on-chip networks. In: Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP), pp. 742–749 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Afsharmazayejani, R., Yazdanpanah, F., Rezaei, A., Alaei, M., Daneshtalab, M. (2018). HoneyWiN: Novel Honeycomb-Based Wireless NoC Architecture in Many-Core Era. In: Voros, N., Huebner, M., Keramidas, G., Goehringer, D., Antonopoulos, C., Diniz, P. (eds) Applied Reconfigurable Computing. Architectures, Tools, and Applications. ARC 2018. Lecture Notes in Computer Science(), vol 10824. Springer, Cham. https://doi.org/10.1007/978-3-319-78890-6_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-78890-6_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78889-0
Online ISBN: 978-3-319-78890-6
eBook Packages: Computer ScienceComputer Science (R0)