Skip to main content

HoneyWiN: Novel Honeycomb-Based Wireless NoC Architecture in Many-Core Era

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 10824)

Abstract

Although NoC-based systems with many cores are commercially available, their multi-hop nature has become a bottleneck on scaling performance and energy consumption parameters. Alternatively, hybrid wireless NoC provides a postern by exploiting single-hop express links for long-distance communications. Also, there is a common wisdom that grid-like mesh is the most stable topology in conventional designs. That is why almost all of the emerging architectures had been relying on this topology as well. In this paper, first we challenge the efficiency of the grid-like mesh in emerging systems. Then, we propose HoneyWiN, a hybrid reconfigurable wireless NoC architecture that relies on the honeycomb topology. The simulation results show that on average HoneyWiN saves 17% of energy consumption while increases the network throughput by 10% compared to its wireless mesh counterpart.

Keywords

  • MCSoC
  • Wireless NoC
  • Honeycomb
  • Mesh
  • Energy efficiency

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-78890-6_25
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-78890-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   131.00
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

References

  1. Benini, L., De Micheli, G.: Networks on chips: a new SoC paradigm. Computer 35(1), 70–78 (2002)

    CrossRef  Google Scholar 

  2. Karkar, A., Mak, T., Tong, K.F., Yakovlev, A.: A survey of emerging interconnects for on-chip efficient multicast and broadcast in many-cores. IEEE Circuits Syst. Mag. 16(1), 58–72 (2016)

    CrossRef  Google Scholar 

  3. Rezaei, A., Zhao, D., Daneshtalab, M., Zhou, H.: Multi-objective task mapping approach for wireless NoC in dark silicon age. In: Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP), pp. 589–592 (2017)

    Google Scholar 

  4. Rezaei, A., Daneshtalab, M., Zhao, D., Modarressi, M.: SAMi: self-aware migration approach for congestion reduction in NoC-based MCSoC. In: IEEE International System-on-Chip Conference (SOCC), pp. 145–150 (2016)

    Google Scholar 

  5. Abadal, S., Cabellos-Aparicio, A., Alarcon, E., Torrellas, J.: WiSync: an architecture for fast synchronization through on-chip wireless communication. In: International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pp. 3–17 (2016)

    Google Scholar 

  6. Gade, S.H., Deb, S.: HyWin: hybrid wireless NoC with sandboxed sub-networks for CPU/GPU architectures. IEEE Trans. Comput. 66(7), 1145–1158 (2017)

    MathSciNet  CrossRef  Google Scholar 

  7. Ganguly, A., Chang, K., Deb, S., Pande, P.P., Belzer, B., Teuscher, C.: Scalable hybrid wireless network-on-chip architectures for multicore systems. IEEE Trans. Comput. 60(10), 1485–1502 (2011)

    MathSciNet  CrossRef  Google Scholar 

  8. Mineo, A., Palesi, M., Ascia, G., Catania, V.: An adaptive transmitting power technique for energy efficient mm-wave wireless NoCs. In: Design, Automation and Test in Europe (DATE), p. 271 (2014)

    Google Scholar 

  9. Kawasaki, K., Akiyama, Y., Komori, K., Uno, M., Takeuchi, H., Itagaki, T., Hino, Y., Kawasaki, Y., Ito, K., Hajimiri, A.: A millimeter-wave intra-connect solution. IEEE J. Solid-State Circuits 45(12), 2655–2666 (2010)

    CrossRef  Google Scholar 

  10. Yu, X., Sah, S.P., Rashtian, H., Mirabbasi, S., Pande, P.P., Heo, D.: A 1.2-pj/bit 16-gb/s 60-ghz ook transmitter in 65-nm cmos for wireless network-on-chip. IEEE Trans. Microw. Theory Tech. 62(10), 2357–2369 (2014)

    CrossRef  Google Scholar 

  11. Wu, H., Nan, L., Tam, S.W., Hsieh, H.H., Jou, C., Reinman, G., Cong, J., Chang, M.C.F.: A 60GHz on-chip RF-interconnect with \(\lambda \)/4 coupler for 5Gbps bi-directional communication and multi-drop arbitration. In: IEEE Custom Integrated Circuits Conference (CICC), pp. 1–4 (2012)

    Google Scholar 

  12. Chang, M.F., Cong, J., Kaplan, A., Naik, M., Reinman, G., Socher, E., Tam, S.W.: CMP network-on-chip overlaid with multi-band RF-interconnect. In: International Symposium on High Performance Computer Architecture (HPCA), pp. 191–202 (2008)

    Google Scholar 

  13. Ito, H., Kimura, M., Miyashita, K., Ishii, T., Okada, K., Masu, K.: A bidirectional- and multi-drop-transmission-line interconnect for multipoint-to-multipoint on-chip communications. IEEE J. Solid-State Circuits 43, 1020–1029 (2008)

    CrossRef  Google Scholar 

  14. Hu, J., Xu, J., Huang, M., Wu, H.: A 25-Gbps 8-ps/mm transmission line based interconnect for on-chip communications in multi-core chips. In: IEEE International Microwave Symposium Digest (IMS), pp. 1–4 (2013)

    Google Scholar 

  15. Nakajima, K., Maruyama, A., Kohtani, M., Sugiura, T., Otobe, E., Lee, J., Cho, S., Kwak, K., Lee, J., Yoshimasu, T., Fujishima, M.: 23Gbps 9.4pj/bit 80/100GHz band CMOS transceiver with on-board antenna for short-range communication. In: IEEE Asian Solid-State Circuits Conference (A-SSCC), pp. 173–176 (2014)

    Google Scholar 

  16. Byeon, C.W., Yoon, C.H., Park, C.S.: A 67-mw 10.7-Gb/s 60-GHz OOK CMOS transceiver for short-range wireless communications. IEEE Trans. Microw. Theory Tech. 61, 3391–3401 (2013)

    CrossRef  Google Scholar 

  17. Karkar, A., Al-Dujaily, R., Yakovlev, A., Tong, K., Mak, T.: Surface wave communication system for on-chip and off-chip interconnects. In: International Workshop on Network on Chip Architectures (NoCArc), pp. 11–16 (2012)

    Google Scholar 

  18. Liang, Y., Yu, H., Zhao, J., Yang, W., Wang, Y.: An energy efficient and low cross-talk CMOS sub-THz i/o with surface-wave modulator and interconnect. In: IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), pp. 110–115 (2015)

    Google Scholar 

  19. Hanson, G.W.: Fundamental transmitting properties of carbon nanotube antennas. IEEE Trans. Antennas Propag. 53(11), 3426–3435 (2005)

    CrossRef  Google Scholar 

  20. Saxena, S., Manur, D.S., Shamim, M.S., Ganguly, A.: A folded wireless network-on-chip using graphene based THz-band antennas. In: International Conference on Nanoscale Computing and Communication (NanoCom), p. 29 (2017)

    Google Scholar 

  21. Balasubramaniam, S., Kangasharju, J.: Realizing the internet of nano things: challenges, solutions, and applications. Computer 46(2), 62–68 (2013)

    CrossRef  Google Scholar 

  22. Vien, Q.T., Agyeman, M.O., Le, T.A., Mak, T.: On the nanocommunications at THz band in Graphene-enabled wireless network-on-chip. In: Mathematical Problems in Engineering, Article ID 9768604 (2017)

    Google Scholar 

  23. Hu, W.H., Wang, C., Bagherzadeh, N.: Design and analysis of a mesh-based wireless network-on-chip. J. Supercomput. 71(8), 2830–2846 (2015)

    CrossRef  Google Scholar 

  24. DiTomaso, D., Kodi, A., Kaya, S., Matolak, D.: iWISE: inter-router wireless scalable express channels for network-on-chips (NoCs) architecture. In: Annual Symposium on High Performance Interconnects (HOTI), pp. 11–18 (2011)

    Google Scholar 

  25. More, A., Taskin, B.: A unified design methodology for a hybrid wireless 2-D NoC. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 640–643 (2012)

    Google Scholar 

  26. Rezaei, A., Daneshtalab, M., Safaei, F., Zhao, D.: Hierarchical approach for hybrid wireless network-on-chip in many-core era. Comput. Electr. Eng. 51(C), 225–234 (2016)

    CrossRef  Google Scholar 

  27. Stojmenovic, I.: Honeycomb networks: topological properties and communication algorithms. IEEE Trans. Parallel Distrib. Syst. 8(10), 1036–1042 (1997)

    CrossRef  Google Scholar 

  28. Yin, A.W., Xu, T.C., Liljeberg, P., Tenhunen, H.: Explorations of honeycomb topologies for network-on-chip. In: IFIP International Conference on Network and Parallel Computing (NPC), pp. 73–79 (2009)

    Google Scholar 

  29. Catania, V., Mineo, A., Monteleone, S., Palesi, M., Patti, D.: Cycle-accurate network on chip simulation with noxim. ACM Trans. Model. Comput. Simul. 27(1), 4 (2016)

    CrossRef  Google Scholar 

  30. Kahng, A.B., Li, B., Peh, L.S., Samadi, K.: Orion 2.0: a power-area simulator for interconnection networks. IEEE Trans. Very Large Scale Integr. VLSI Syst. 20(1), 191–196 (2012)

    CrossRef  Google Scholar 

  31. Catania, V., Mineo, A., Monteleone, S., Palesi, M., Patti, D.: Energy efficient transceiver in wireless network on chip architectures. In: Design, Automation and Test in Europe (DATE), pp. 1321–1326 (2016)

    Google Scholar 

  32. Rezaei, A., Daneshtalab, M., Palesi, M., Zhao, D.: Efficient congestion-aware scheme for wireless on-chip networks. In: Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP), pp. 742–749 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raheel Afsharmazayejani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Afsharmazayejani, R., Yazdanpanah, F., Rezaei, A., Alaei, M., Daneshtalab, M. (2018). HoneyWiN: Novel Honeycomb-Based Wireless NoC Architecture in Many-Core Era. In: Voros, N., Huebner, M., Keramidas, G., Goehringer, D., Antonopoulos, C., Diniz, P. (eds) Applied Reconfigurable Computing. Architectures, Tools, and Applications. ARC 2018. Lecture Notes in Computer Science(), vol 10824. Springer, Cham. https://doi.org/10.1007/978-3-319-78890-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78890-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78889-0

  • Online ISBN: 978-3-319-78890-6

  • eBook Packages: Computer ScienceComputer Science (R0)