Skip to main content

Linear Ordering Based MIP Formulations for the Vertex Separation or Pathwidth Problem

  • Conference paper
  • First Online:
Book cover Combinatorial Algorithms (IWOCA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10765))

Included in the following conference series:

Abstract

We consider the task to compute the pathwidth of a graph which has been shown to be equivalent to the vertex separation problem. The latter is naturally modeled as a linear ordering problem w.r.t. the vertices of the graph. Mixed-integer programs proposed so far express linear orders using either position or set assignment variables. As we show, the lower bound on the pathwidth obtained when solving their linear programming relaxations is zero for any directed graph. We then present a new formulation based on conventional linear ordering variables and a slightly different perspective on the problem that sustains stronger lower bounds. An experimental evaluation of three mixed-integer programs, each representing one of the different modeling schemes, displays their potentials and limitations when used to solve the problem to optimality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    SageMath is an open-source mathematics library http://www.sagemath.org.

  2. 2.

    The model in [19] can be implemented such that its relaxation yields non-zero bounds for some graphs, but it remains of too excessive size and inferior to \(\textit{MIP}_P\) in practice.

  3. 3.

    IBM ILOG CPLEX Optimization Studio is a proprietary LP and MIP solver.

References

  1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Algebr. Discret. Methods 8(2), 277–284 (1987)

    Article  MathSciNet  Google Scholar 

  2. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Discret. Appl. Math. 23(1), 11–24 (1989)

    Article  MathSciNet  Google Scholar 

  3. Biedl, T.C., Bläsius, T., Niedermann, B., Nöllenburg, M., Prutkin, R., Rutter, I.: Using ILP/SAT to determine pathwidth, visibility representations, and other grid-based graph drawings. CoRR, abs/1308.6778v2 (2015)

    Google Scholar 

  4. Bodlaender, H., Gustedt, J., Telle, J.A.: Linear-time register allocation for a fixed number of registers. In: Proceedings of 9th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1998, Philadelphia, PA, USA, pp. 574–583. SIAM (1998)

    Google Scholar 

  5. Bodlaender, H.L.: Dynamic programming on graphs with bounded treewidth. In: Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 105–118. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-19488-6_110

    Chapter  Google Scholar 

  6. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11(1–2), 1–23 (1993)

    MathSciNet  MATH  Google Scholar 

  7. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci. 209(1–2), 1–45 (1998)

    Article  MathSciNet  Google Scholar 

  8. Bodlaender, H.L., Fomin, F.V., Koster, A.M., Kratsch, D., Thilikos, D.M.: A note on exact algorithms for vertex ordering problems on graphs. Theory Comput. Syst. 50(3), 420–432 (2012)

    Article  MathSciNet  Google Scholar 

  9. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms 21(2), 358–402 (1996)

    Article  MathSciNet  Google Scholar 

  10. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of bounded treewidth. Comput. J. 51(3), 255 (2007)

    Article  Google Scholar 

  11. Bodlaender, H.L., Wolle, T., Koster, A.M.C.A.: Contraction and treewidth lower bounds. J. Graph Algorithms Appl. 10(1), 5–49 (2006)

    Article  MathSciNet  Google Scholar 

  12. Coudert, D.: A note on integer linear programming formulations for linear ordering problems on graphs. Technical report hal-01271838, INRIA, February 2016

    Google Scholar 

  13. Coudert, D., Mazauric, D., Nisse, N.: Experimental evaluation of a branch-and-bound algorithm for computing pathwidth and directed pathwidth. J. Exp. Algorithmics 21, 1.3:1–1.3:23 (2016)

    Article  MathSciNet  Google Scholar 

  14. Deo, N., Krishnamoorthy, M.S., Langston, M.A.: Exact and approximate solutions for the gate matrix layout problem. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 6(1), 79–84 (1987)

    Article  Google Scholar 

  15. Díaz, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Comput. Surv. 34(3), 313–356 (2002)

    Article  Google Scholar 

  16. Duarte, A., Escudero, L.F., Martí, R., Mladenovic, N., Pantrigo, J.J., Sánchez-Oro, J.: Variable neighborhood search for the vertex separation problem. Comput. Oper. Res. 39(12), 3247–3255 (2012)

    Article  MathSciNet  Google Scholar 

  17. Ellis, J.A., Sudborough, I.H., Turner, J.S.: The vertex separation and search number of a graph. Inf. Comput. 113(1), 50–79 (1994)

    Article  MathSciNet  Google Scholar 

  18. Fraire-Huacuja, H.J., Castillo-García, N., López-Locés, M.C., Martínez Flores, J.A., Pazos R., R.A., González Barbosa, J.J., Carpio Valadez, J.M.: Integer linear programming formulation and exact algorithm for computing pathwidth. In: Melin, P., Castillo, O., Kacprzyk, J. (eds.) Nature-Inspired Design of Hybrid Intelligent Systems. SCI, vol. 667, pp. 673–686. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47054-2_44

    Chapter  Google Scholar 

  19. Fraire Huacuja, H.J., Castillo-García, N., Pazos Rangel, R.A., Martínez Flores, J.A., González Barbosa, J.J., Carpio Valadez, J.M.: Two new exact methods for the vertex separation problem. IJCOPI 6(1), 31–41 (2015)

    Google Scholar 

  20. Fürer, M.: Faster computation of path-width. In: Mäkinen, V., Puglisi, S.J., Salmela, L. (eds.) IWOCA 2016. LNCS, vol. 9843, pp. 385–396. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44543-4_30

    Chapter  Google Scholar 

  21. Gurski, F.: Linear programming formulations for computing graph layout parameters. Comput. J. 58, 2921–2927 (2015)

    Article  Google Scholar 

  22. Kinnersley, N.G.: The vertex separation number of a graph equals its path-width. Inf. Process. Lett. 42(6), 345–350 (1992)

    Article  MathSciNet  Google Scholar 

  23. Kitsunai, K., Kobayashi, Y., Komuro, K., Tamaki, H., Tano, T.: Computing directed pathwidth in \(O(1.89^{n})\) time. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 182–193. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33293-7_18

    Chapter  Google Scholar 

  24. Kobayashi, Y., Komuro, K., Tamaki, H.: Search space reduction through commitments in pathwidth computation: an experimental study. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 388–399. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07959-2_33

    Chapter  Google Scholar 

  25. Lengauer, T.: Black-white pebbles and graph separation. Acta Informatica 16(4), 465–475 (1981)

    Article  MathSciNet  Google Scholar 

  26. Martí, R., Campos, V., Piñana, E.: A branch and bound algorithm for the matrix bandwidth minimization. Eur. J. Oper. Res. 186(2), 513–528 (2008)

    Article  MathSciNet  Google Scholar 

  27. Martí, R., Reinelt, G.: The Linear Ordering Problem. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-16729-4

    Book  MATH  Google Scholar 

  28. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986)

    Article  MathSciNet  Google Scholar 

  29. Solano, F., Pióro, M.: Lightpath reconfiguration in WDM networks. IEEE/OSA J. Opt. Commun. Netw. 2(12), 1010–1021 (2010)

    Article  Google Scholar 

  30. Suchan, K., Villanger, Y.: Computing pathwidth faster than \(2^{n}\). In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 324–335. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11269-0_27

    Chapter  Google Scholar 

  31. Yang, B., Cao, Y.: Digraph searching, directed vertex separation and directed pathwidth. Discret. Appl. Math. 156(10), 1822–1837 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Mallach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mallach, S. (2018). Linear Ordering Based MIP Formulations for the Vertex Separation or Pathwidth Problem. In: Brankovic, L., Ryan, J., Smyth, W. (eds) Combinatorial Algorithms. IWOCA 2017. Lecture Notes in Computer Science(), vol 10765. Springer, Cham. https://doi.org/10.1007/978-3-319-78825-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78825-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78824-1

  • Online ISBN: 978-3-319-78825-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics