Advertisement

Detection Methods of Static Microscopic Objects

  • Libor Hargaš
  • Zuzana Loncová
  • Dušan Koniar
  • František Jablončík
  • Jozef Volák
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10814)

Abstract

The article deals with selected methods of automated detection of microscopic objects in video sequences obtained by high-speed cinematography and light microscopy. The objects of interest are represented by cilia of airways and also artefact generating objects (gas bubbles and erythrocytes). The main idea of this work is to create complex diagnostic tool for evaluation of ciliated epithelium in airways, where the ratio between moving and static cilia helps to search proper diagnosis (confirmation of PCD – primary ciliary dyskinesia). Methods for automated segmentation of static cilia creates a big challenge for image analysis against the dynamic ones due to character and parameters of obtained images. This work is supported by medical specialists from Jessenius Faculty of Medicine in Martin (Slovakia) and proposed tools would fill the gap in the diagnostics in the field of respirology in Slovakia.

Keywords

Cilia Image segmentation Classification 

Notes

Acknowledgement

Authors of this paper wish to kindly thank to all supporting bodies, especially to grant APVV-15-0462: Research on sophisticated methods for analyzing the dynamic properties of respiratory epithelium’s microscopic elements.

References

  1. 1.
    Russ, J.C.: The Image Processing Handbook, 6th edn. CRC Press, Boca Raton (2011). ISBN 978-1-4398-4063-4CrossRefzbMATHGoogle Scholar
  2. 2.
    Trojan, S., et al.: Lékařská fyziologie, 4th edn. Grada Publishing, Praha (2003). ISBN 80-247-0512-5Google Scholar
  3. 3.
    Nečas, E., Šulc, K., Vokurka, M.: Patologická fyziologie orgánových systémů. Nakladatelství Karolinum, Praha (2006). ISBN 80-246-0675-5Google Scholar
  4. 4.
    Silbernagl, S., Despopoulos, A.: Atlas fyzilogie člověka, 8th edn. Grada Publishing, Praha (2016). ISBN 978-80-247-4271-7Google Scholar
  5. 5.
    Pei-Gee, P.H. (ed.): Image Segmantation. InTech, Rijeka (2014). ISBN 978-953-307-228-9Google Scholar
  6. 6.
    Haralick, R.M., Shapiro, L.G.: Image segmentation techniques. Comput. Vis. Graph. Image Process. 29, 100–132 (1985). ISSN 0734-189XCrossRefGoogle Scholar
  7. 7.
    Frankovsky, P., Ostertag, O., Trebuna, F., Ostertagova, E., Kelemen, M.: Methodology of contact stress analysis of gearwheel by means of experimental photoelasticity. Appl. Opt. 55(18), 4856–4864 (2016). ISSN 1539-4522CrossRefGoogle Scholar
  8. 8.
    Parker, J.R.: Algorithms for Image Processing and Computer Vision, 2nd edn. Wiley Publishing, Hoboken (2010). ISBN 978-0-470-64385-3Google Scholar
  9. 9.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Pearson, London (2008). ISBN 978-0131687288Google Scholar
  10. 10.
    Umbaugh, S.E.: Computer Imaging: Digital Image Analysis and Processing. CRC Press, Boca Raton (2000). ISBN 0-8493-2919-1zbMATHGoogle Scholar
  11. 11.
    Mikulova, Z., Duchon, F., Dekan, M., Babinec, A.: Localization of mobile robot using visual system. Int. J. Adv. Robot. Syst. 14(5). Article No. 1729881417736085. ISSN 1729-8814Google Scholar
  12. 12.
    Pratt, W.K.: Digital Image Processing: PIKS Inside, 3rd edn. Wiley, New York (2001). ISBN 0-471-22132-5CrossRefzbMATHGoogle Scholar
  13. 13.
    Pietikainen, M., Hadid, A., Zhao, G.: Computer Vision Using Local Binary Patterns. Computer Imaging and Vision, vol. 40. Springer, London (2011).  https://doi.org/10.1007/978-0-85729-748-8. ISBN 978-0-85729-748-8Google Scholar
  14. 14.
    Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29, 51–59 (1996). ISSN 0031-3203CrossRefGoogle Scholar
  15. 15.
    Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds.) AMFG 2007. LNCS, vol. 4778, pp. 168–182. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-75690-3_13. ISBN 978-3-540-75690-3CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechatronics and Electronics, Faculty of Electrical EngineeringUniversity of ŽilinaŽilinaSlovakia
  2. 2.Division of Bioinformatics, BiocenterMedical University of InnsbruckInnsbruckAustria

Personalised recommendations