Skip to main content

A Combined Approach of Multiscale Texture Analysis and Interest Point/Corner Detectors for Microcalcifications Diagnosis

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2018)

Abstract

Screening programs use mammography as primary diagnostic tool for detecting breast cancer at an early stage. The diagnosis of some lesions, such as microcalcifications, is still difficult today for radiologists. In this paper, we proposed an automatic model for characterizing and discriminating tissue in normal/abnormal and benign/malign in digital mammograms, as support tool for the radiologists. We trained a Random Forest classifier on some textural features extracted on a multiscale image decomposition based on the Haar wavelet transform combined with the interest points and corners detected by using Speeded Up Robust Feature (SURF) and Minimum Eigenvalue Algorithm (MinEigenAlg), respectively. We tested the proposed model on 192 ROIs extracted from 176 digital mammograms of a public database. The model proposed was high performing in the prediction of the normal/abnormal and benign/malignant ROIs, with a median AUC value of \(98.46\%\) and \(94.19\%\), respectively. The experimental result was comparable with related work performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elter, M., Horsch, A.: CADx of mammographic masses and clustered microcalcifications: a review. Med. Phys. 36(6), 2052–2068 (2009)

    Article  Google Scholar 

  2. Howell, A.: The emerging breast cancer epidemic: early diagnosis and treatment. Breast Cancer Res. 12(4), S10 (2010)

    Article  Google Scholar 

  3. Breast Cancer Facts. http://www.uthscsa.edu/hscnews/pdf/. Accessed Apr 2010

  4. Fletcher, S.W., Elmore, J.G.: Mammographic screening for breast cancer. N. Engl. J. Med. 348(17), 1672–1680 (2003)

    Article  Google Scholar 

  5. Elmore, J.G., Armstrong, K., Lehman, C.D., Fletcher, S.W.: Screening for breast cancer. JAMA 293(10), 1245–1256 (2006)

    Article  Google Scholar 

  6. Cheng, H.D., Cai, X., Chen, X., Hu, L., Lou, X.: Computer-aided detection and classification of microcalcifications in mammograms: a survey. Pattern Recogn. 36(12), 2967–2991 (2003)

    Article  MATH  Google Scholar 

  7. Brown, J., Bryan, S., Warren, R.: Mammography screening: an incremental cost effectiveness analysis of double versus single reading of mammograms. BMJ 312(7034), 809–812 (1996)

    Article  Google Scholar 

  8. McCormack, V.A., dos Santos Silva, I.: Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol. Prev. Biomark. 15(6), 1159–1169 (2006)

    Article  Google Scholar 

  9. Wolfe, J.N.: Breast patterns as an index of risk for developing breast cancer. Am. J. Roentgenol. 126(6), 1130–1137 (1976)

    Article  Google Scholar 

  10. Jiang, Y., Nishikawa, R.M., Wolverton, D.E., Metz, C.E., Giger, M.L., Schmidt, R.A., Vyborny, C.J., Doi, K.: Malignant and benign clustered microcalcifications: automated feature analysis and classification. Radiology 198(3), 671–678 (1996)

    Article  Google Scholar 

  11. Chan, H.P., Sahiner, B., Lam, K.L., Petrick, N., Helvie, M.A., Goodsitt, M.M., Adler, D.D.: Computerized analysis of mammographic microcalcifications in morphological and texture feature spaces. Med. Phys. 25(10), 2007–2019 (1998)

    Article  Google Scholar 

  12. Nakayama, R., Uchiyama, Y., Watanabe, R., Katsuragawa, S., Namba, K.: Computer-aided diagnosis scheme for histological classification of clustered microcalcifications on magnification mammograms. Med. Phys. 31(4), 789–799 (2004)

    Article  Google Scholar 

  13. Sampat, M.P., Markey, M.K., Bovik, A.C.: Computer-aided detection and diagnosis in mammography. Handb. Image Video Process. 2(1), 1195–1217 (2005)

    Article  Google Scholar 

  14. Zhang, X., Homma, N., Goto, S., Kawasumi, Y., Ishibashi, T., Abe, M., Sugita, N., Yoshizawa, M.: A hybrid image filtering method for computer-aided detection of microcalcification clusters in mammograms. J. Med. Eng. 2013, 8 p. (2013). Article no. 615254

    Google Scholar 

  15. Vivona, L., Cascio, D., Fauci, F., Raso, G.: Fuzzy technique for microcalcifications clustering in digital mammograms. BMC Med. Imaging 14(1), 23 (2014)

    Article  Google Scholar 

  16. Wang, J., Nishikawa, R.M., Yang, Y.: Improving the accuracy in detection of clustered microcalcifications with a context-sensitive classification model. Med. Phys. 43(1), 159–170 (2016)

    Article  Google Scholar 

  17. Oliver, A., Torrent, A., Lladó, X., Tortajada, M., Tortajada, L., Sentís, M., Freixenet, J., Zwiggelaar, R.: Automatic microcalcification and cluster detection for digital and digitised mammograms. Knowl.-Based Syst. 28, 68–75 (2012)

    Article  Google Scholar 

  18. Gallardo-Caballero, R., García-Orellana, C.J., García-Manso, A., González-Velasco, H.M., Macías-Macías, M.: Independent component analysis to detect clustered microcalcification breast cancers. Sci. World J. 2012, 6 p. (2012). Article no. 540457

    Google Scholar 

  19. Jian, W., Sun, X., Luo, S.: Computer-aided diagnosis of breast microcalcifications based on dual-tree complex wavelet transform. Biomed. Eng. Online 11(1), 96 (2012)

    Article  Google Scholar 

  20. Phadke, A.C., Rege, P.P.: Detection and classification of microcalcifications using discrete wavelet transform. Int. J. Emerg. Trends Technol. Comput. Sci. 2(4), 130–134 (2013)

    Google Scholar 

  21. Khehra, B.S., Pharwaha, A.P.S.: Classification of clustered microcalcifications using MLFFBP-ANN and SVM. Egypt. Inform. J. 17(1), 11–20 (2016)

    Article  Google Scholar 

  22. Boulehmi, H., Mahersia, H., Hamrouni, K.: A new CAD system for breast microcalcifications diagnosis. Int. J. Adv. Comput. Sci. Appl. 7(4), 133–143 (2016)

    Google Scholar 

  23. Chen, Z., Strange, H., Oliver, A., Denton, E.R., Boggis, C., Zwiggelaar, R.: Topological modeling and classification of mammographic microcalcification clusters. IEEE Trans. Biomed. Eng. 62(4), 1203–1214 (2015)

    Article  Google Scholar 

  24. Fanizzi, A., Basile, T.M.A., Losurdo, L., Amoroso, N., Bellotti, R., Bottigli, U., Dentamaro, R., Didonna, V., Fausto, A., Massafra, R., Moschetta, M., Tamborra, P., Tangaro, S., La Forgia, D.: Hough transform for clustered microcalcifications detection in full-field digital mammograms. In: Applications of Digital Image Processing XL, vol. 10396, p. 1039616. International Society for Optics and Photonics, San Diego (2017)

    Google Scholar 

  25. Sklansky, J.: On the Hough technique for curve detection. IEEE Trans. Comput. C–27(10), 923–926 (1978)

    Article  MATH  Google Scholar 

  26. Pedersen, S.J.K.: Circular hough transform. Aalborg Univ. Vis. Graph. Interact. Syst. 123, 123 (2007)

    Google Scholar 

  27. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall, Upper Saddle River (2006)

    Google Scholar 

  28. Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  29. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  30. Shi, J., Tomasi, C.: Good features to track. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proceedings CVPR 1994, pp. 593–600. IEEE (1994)

    Google Scholar 

  31. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  32. Ramos-Pollán, R., Guevara-López, M.A., Suárez-Ortega, C., Díaz-Herrero, G., Franco-Valiente, J.M., Rubio-del-Solar, M., González-de-Posada, N., Pires Vaz, M.A., Loureiro, J., Ramos, I.: Discovering mammography-based machine learning classifiers for breast cancer diagnosis. J. Med. Syst. 36(4), 2259–2269 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by founding from Italian Ministry of Health “Ricerca Corrente 2016”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Losurdo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Losurdo, L. et al. (2018). A Combined Approach of Multiscale Texture Analysis and Interest Point/Corner Detectors for Microcalcifications Diagnosis. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2018. Lecture Notes in Computer Science(), vol 10813. Springer, Cham. https://doi.org/10.1007/978-3-319-78723-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78723-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78722-0

  • Online ISBN: 978-3-319-78723-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics