Skip to main content

Simulation of Blood Flow in Microfluidic Devices for Analysing of Video from Real Experiments

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2018)

Abstract

Simulation of microfluidic devices is a great tool for optimizing these devices. For the development of simulation models, it is necessary to ensure a sufficient degree of simulation accuracy. Accuracy is ensured by measuring appropriate values that tell us about the course of the simulation and can also be measured in a real experiment. Measured values will simplify the real situation so that we can develop the model for a specific purpose and measure the values that are relevant to the research. In this article we present the approach in which the data we have gained from simulation are used to improve the quality of data processing from video from a real experiment.

H. Bachratý, K. Bachratá, M. Chovanec, F. Kajánek, M. Smiešková and M. Slavík—This work was supported by the Ministry of Education, Science, Research and Sport of the Slovak Republic under the contract No. VEGA 1/0643/17 and by the Slovak Research and Development Agency under the contract No. APVV-15-0751.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnold, A., et al.: ESPResSo 3.1: molecular dynamics software for coarse-grained models. In: Griebel, M., Schweitzer, M. (eds.) LNCSE, pp. 1–23. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32979-1_1

    Google Scholar 

  2. Cimrák, I., Gusenbauer, M., Schrefl, T.: Modelling and simulation of processes in microfluidic devices for biomedical applications. Comput. Math. Appl. 64(3), 278–288 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cimrák, I., Gusenbauer, M., Jančigová, I.: An ESPResSo implementation of elastic objects immersed in a fluid. Comput. Phys. Commun. 185(3), 900–907 (2014)

    Article  MATH  Google Scholar 

  4. Bachratý, H., Bachratá, K.: On modeling blood flow in microfluidic devices. In: ELEK-TRO 19 May 2014, pp. 518-521. IEEE (2014)

    Google Scholar 

  5. Bachratý, H., Kovalčíková, K., Bachratá, K., Slavík, M.: Methods of exploring the red blood cells rotation during the simulations in devices with periodic topology. In: 2017 International Conference on Information and Digital Technologies (IDT), 5 July 2017, pp. 36–46. IEEE (2017)

    Google Scholar 

  6. Bachratá, K., Bachratý, H., Slavík, M.: Statistics for comparison of simulations and experiments of flow of blood cells. In: EPJ Web of Conferences, vol. 143, pp. 2002–2016. EDP Sciences (2017)

    Google Scholar 

  7. Tomášiková, J.: Processing and analysis of videosequences from biological experiments using special detection and tracking algorithms. Master thesis - University of Žilina. Faculty of Management Science and Informatics. Department of Software Technology, Supervisor: doc. Mgr. Ivan Cimrák, Dr., Žilina, FRI ZU, p. 63 (2017)

    Google Scholar 

  8. Mučka, F.: Algorithms and their implementation for analysis and image processing from recordings of biological experiments. Master thesis - University of Žilina. Faculty of Management Science and Informatics. Department of Software Technology, Supervisor: doc. Mgr. Ivan Cimrák, Dr., Žilina, FRI ZU, p. 61 (2017)

    Google Scholar 

  9. Rojas, R.: Neural Networks: A Systematic Introduction. Springer Science & Business Media, Heidelberg (1996). https://doi.org/10.1007/978-3-642-61068-4

    Book  MATH  Google Scholar 

  10. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarína Bachratá .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bachratý, H., Bachratá, K., Chovanec, M., Kajánek, F., Smiešková, M., Slavík, M. (2018). Simulation of Blood Flow in Microfluidic Devices for Analysing of Video from Real Experiments. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2018. Lecture Notes in Computer Science(), vol 10813. Springer, Cham. https://doi.org/10.1007/978-3-319-78723-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78723-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78722-0

  • Online ISBN: 978-3-319-78723-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics