Skip to main content

Chloroplast Genomes Exhibit Eight-Cluster Structuredness and Mirror Symmetry

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2018)

Abstract

Chloroplast genomes have eight-cluster structuredness, in triplet frequency space. Small fragments of a genome converted into a triplet frequency dictionaries are the elements to be clustered. Typical structure consists of eight clusters: six of them correspond to three different positions of a reading frame shifted for 0, 1 and 2 nucleotides (in two opposing strands), the seventh cluster corresponds to a junk regions of a genome, and the eighth cluster is comprised by the fragments with excessive \(\mathsf {GC}\)-content bearing specific RNA genes. The structure exhibits a specific symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gorban, A.N., Zinovyev, A.Y., Popova, T.G.: Seven clusters in genomic triplet distributions. Silico Biol. 3(4), 471–482 (2003)

    Google Scholar 

  2. Gorban, A.N., Zinovyev, A.Y., Popova, T.G.: Four basic symmetry types in the universal 7-cluster structure of microbial genomic sequences. Silico Biol. 5(3), 265–282 (2005)

    Google Scholar 

  3. Mereschkowsky, K.S.: Theorie der zwei Plasmaarten als Grundlage der Symbiogenesis, einer neuen Lehre von der Entstehung der Organismen. Biol. Cent. 30, 353–367 (1910)

    Google Scholar 

  4. Mereschkovsky, K.S.: Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol. Zentr.-Bl. 85(18), 593–604 (1905)

    Google Scholar 

  5. Zimorski, V., Ku, C., Martin, W.F., Gould, S.B.: Endosymbiotic theory for organelle origins. Curr. Opin. Microbiol. 22, 38–48 (2014)

    Article  Google Scholar 

  6. Raven, J.A., Allen, J.F.: Genomics and chloroplast evolution: what did cyanobacteria do for plants? Genome. Biol. 4(3), 209 (2003)

    Article  Google Scholar 

  7. Carbonell-Caballero, J., Alonso, R., Ibanez, V., Terol, J., Talon, M., Dopazo, J.: A phylogenetic analysis of 34 chloroplast genomes elucidates the relationships between wild and domestic species within the genus citrus. Mol. Biol. Evol. 32(8), 2015–2035 (2015)

    Article  Google Scholar 

  8. Leliaert, F., Smith, D.R., Moreau, H., Herron, M.D., Verbruggen, H., Delwiche, C.F., De Clerck, O.: Phylogeny and molecular evolution of the green algae. Crit. Rev. Plant Sci. 31, 1–46 (2012)

    Article  Google Scholar 

  9. Katayama, H., Ogihara, Y.: Phylogenetic affinities of the grasses to other monocotsas revealed by molecular analysis of chloroplast DNA. Curr. Genet. 29, 572–581 (1996)

    Article  Google Scholar 

  10. Milanowski, R., Zakrys, B., Kwiatowski, J.: Phylogenetic analysis of chloroplast small subunit rRNA genes of the genus Euglena Ehrenberg. Int. J. Syst. Evol. Microb. 51, 773–781 (2001)

    Article  Google Scholar 

  11. Marazzi, B., Endress, P.K., De Queiroz, L.P., Conti, E.: Phylogenetic relationships within senna (leguminosae, cassiinae) based on three chloroplast DNA regions: patterns in the evolution of floral symmetry and extrafloral nectaries. Am. J. Bot. 93(2), 288–303 (2006)

    Article  Google Scholar 

  12. Shaw, J., Lickey, E.B., Beck, J.T., Farmer, S.B., Liu, W., Miller, J., et al.: The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am. J. Bot. 92(1), 142–166 (2005)

    Article  Google Scholar 

  13. Dong, W., Liu, J., Yu, J., Wang, L., Zhou, S.: Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS ONE 7(4), 1–9 (2012)

    Google Scholar 

  14. Gielly, L., Taberlet, P.: The use of chloroplast DNA to resolve plant phylogenies: noncoding versus rbcL sequences. Mol. Biol. Evol. 11(5), 769–777 (1994)

    Google Scholar 

  15. Bugaenko, N.N., Gorban, A.N., Sadovsky, M.G.: Maximum entropy method in analysis of genetic text and measurement of its information content. Open Syst. Inf. Dyn. 5, 265–278 (1998)

    Article  MATH  Google Scholar 

  16. Gorban, A.N., Popova, T.G., Sadovsky, M.G., Wünsch, D.C.: Information content of the frequency dictionaries, reconstruction, transformation and classification of dictionaries and genetic texts. In: Intelligent Engineering Systems Through Artificial Neural Networks – Smart Engineering System Design, vol. 11, pp. 657–663. ASME Press, New York (2001)

    Google Scholar 

  17. Gorban, A.N., Popova, T.G., Sadovsky, M.G.: Classification of symbol sequences over thier frequency dictionaries: towards the connection between structure and natural taxonomy. Open Syst. Inf. Dyn. 7, 1–17 (2000)

    Article  MATH  Google Scholar 

  18. Sadovsky, M.G., Shchepanovsky, A.S., Putintzeva, Y.A.: Genes, information and sense: complexity and knowledge retrieval. Theory Biosci. 127, 69–78 (2008)

    Article  Google Scholar 

  19. Sadovsky, M.G.: Comparison of real frequencies of strings vs. the expected ones reveals the information capacity of macromoleculae. J. Biol. Phys. 29, 23–38 (2003)

    Article  Google Scholar 

  20. Sadovsky, M.G.: Information capacity of nucleotide sequences and its applications. Bull. Math. Biol. 68, 156–178 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. http://bioinfo-out.curie.fr/projects/vidaexpert/

  22. Gorban, A.N., Zinovyev, A.Y.: Principal manifolds and graphs in practice: from molecular biology to dynamical systems. Int. J. Neural Syst. 20(3), 219–232 (2010)

    Article  Google Scholar 

  23. Sadovsky, M.G., Senashova, M.Y., Malyshev, A.V.: Eight cluster structuredness of genomes of ground plants. Russ. J. Gen. Biol. 79(2), 124–134 (2018)

    Google Scholar 

Download references

Acknowledgement

This study was supported by a research grant # 14.Y26.31.0004 from the Government of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Sadovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sadovsky, M., Senashova, M., Malyshev, A. (2018). Chloroplast Genomes Exhibit Eight-Cluster Structuredness and Mirror Symmetry. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2018. Lecture Notes in Computer Science(), vol 10813. Springer, Cham. https://doi.org/10.1007/978-3-319-78723-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78723-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78722-0

  • Online ISBN: 978-3-319-78723-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics