Advertisement

Grammatical Evolution Strategies for Bioinformatics and Systems Genomics

  • Jason H. Moore
  • Moshe Sipper
Chapter

Abstract

Evolutionary computing methods are an attractive option for modeling complex biological and biomedical systems because they are inherently parallel, they conduct stochastic search through large solution spaces, they capitalize on the modularity of solutions, they have flexible solution representations, they can utilize expert knowledge, they can consider multiple fitness criteria, and they are inspired by how evolution optimizes fitness through natural selection. Grammatical evolution (GE) is a promising example of evolutionary computing because it generates solutions to a problem using a generative grammar. We review here several detailed examples of GE from the bioinformatics and systems genomics literature and end with some ideas about the challenges and opportunities for integrating GE into biological and biomedical discovery.

References

  1. 1.
    M. Alfonseca, F.J.S. Gil, Evolving an ecology of mathematical expressions with grammatical evolution. Biosystems 111(2), 111–119 (2013)CrossRefGoogle Scholar
  2. 2.
    J. Desel, G. Juhás, “What is a Petri net?” Informal answers for the informed reader, in Unifying Petri Nets: Advances in Petri Nets ed. by H. Ehrig, J. Padberg, G. Juhás, G. Rozenberg (Springer, Berlin/Heidelberg, 2001), pp. 1–25Google Scholar
  3. 3.
    M. Fenton, D. Lynch, S. Kucera, H. Claussen, M. O’Neill, Multilayer optimization of heterogeneous networks using grammatical genetic programming. IEEE Trans. Cybern. 47(9), 2938–2950 (2017)CrossRefGoogle Scholar
  4. 4.
    E. Ferrante, A.E. Turgut, E. Duéñez-Guzmán, M. Dorigo, T. Wenseleers, Evolution of self-organized task specialization in robot swarms. PLoS Comput. Biol. 11(8), e1004,273 (2015)Google Scholar
  5. 5.
    P.J. Goss, J. Peccoud, Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets. Proc. Nat. Acad. Sci. 95(12), 6750–6755 (1998)CrossRefGoogle Scholar
  6. 6.
    C.S. Greene, J. Tan, M. Ung, J.H. Moore, C. Cheng, Big data bioinformatics. J. Cell. Physiol. 229(12), 1896–1900 (2014)CrossRefGoogle Scholar
  7. 7.
    J.I. Hidalgo, J.M. Colmenar, G. Kronberger, S.M. Winkler, O. Garnica, J. Lanchares, Data based prediction of blood glucose concentrations using evolutionary methods. J. Med. Syst. 41(9), 142 (2017)Google Scholar
  8. 8.
    D.S. Himmelstein, A. Lizee, C. Hessler, L. Brueggeman, S.L. Chen, D. Hadley, A. Green, P. Khankhanian, S.E. Baranzini, Systematic integration of biomedical knowledge prioritizes drugs for repurposing. eLife. 6, 1–35 (2017)CrossRefGoogle Scholar
  9. 9.
    E.R. Holzinger, C.C. Buchanan, S.M. Dudek, E.C. Torstenson, S.D. Turner, M.D. Ritchie, Initialization parameter sweep in ATHENA: optimizing neural networks for detecting gene-gene interactions in the presence of small main effects, in Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation (ACM, New York, 2010), pp. 203–210Google Scholar
  10. 10.
    E.R. Holzinger, S.M. Dudek, A.T. Frase, S.A. Pendergrass, M.D. Ritchie, ATHENA: the analysis tool for heritable and environmental network associations. Bioinformatics 30(5), 698–705 (2013)CrossRefGoogle Scholar
  11. 11.
    T. Ideker, T. Galitski, L. Hood, A new approach to decoding life: systems biology. Ann. Rev. Genomics Hum. Genet. 2(1), 343–372 (2001)CrossRefGoogle Scholar
  12. 12.
    D. Kim, R. Li, S.M. Dudek, M.D. Ritchie, ATHENA: Identifying interactions between different levels of genomic data associated with cancer clinical outcomes using grammatical evolution neural network. BioData Min. 6(1), 23 (2013)Google Scholar
  13. 13.
    D. Kim, R. Li, S.M. Dudek, A.T. Frase, S.A. Pendergrass, M.D. Ritchie, Knowledge-driven genomic interactions: an application in ovarian cancer. BioData Min. 7(1), 20 (2014)Google Scholar
  14. 14.
    J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1 (MIT Press, Cambridge, 1992)zbMATHGoogle Scholar
  15. 15.
    M. Marcotty, H. Ledgard, The World of Programming Languages (Springer, Berlin, 1986)zbMATHGoogle Scholar
  16. 16.
    B.A. McKinney, D.M. Reif, M.D. Ritchie, J.H. Moore, Machine learning for detecting gene-gene interactions. Appl. Bioinform. 5(2), 77–88 (2006)CrossRefGoogle Scholar
  17. 17.
    J.H. Moore, Bioinformatics. J. Cell. Physiol. 213(2), 365–369 (2007). http://dx.doi.org/10.1002/jcp.21218 CrossRefGoogle Scholar
  18. 18.
    J.H. Moore, L.W. Hahn, Petri net modeling of high-order genetic systems using grammatical evolution. BioSystems 72(1), 177–186 (2003)CrossRefGoogle Scholar
  19. 19.
    J.H. Moore, L.W. Hahn, An improved grammatical evolution strategy for hierarchical Petri net modeling of complex genetic systems, in EvoWorkshops (Springer, Berlin, 2004), pp. 63–72Google Scholar
  20. 20.
    J.H. Moore, F.W. Asselbergs, S.M. Williams, Bioinformatics challenges for genome-wide association studies. Bioinformatics 26(4), 445–455 (2010)CrossRefGoogle Scholar
  21. 21.
    A.A. Motsinger-Reif, S.M. Dudek, L.W. Hahn, M.D. Ritchie, Comparison of approaches for machine-learning optimization of neural networks for detecting gene-gene interactions in genetic epidemiology. Genet. Epidemiol. 32(4), 325–340 (2008)CrossRefGoogle Scholar
  22. 22.
    R.S. Olson, M. Sipper, W. La Cava, S. Tartarone, S. Vitale, W. Fu, J.H. Holmes, J.H. Moore, A system for accessible artificial intelligence, in Genetic Programming Theory and Practice XV (Springer, New York, 2017). https://arxiv.org/abs/1705.00594 (to appear)
  23. 23.
    M.D. Ritchie, B.C. White, J.S. Parker, L.W. Hahn, J.H. Moore, Optimization of neural network architecture using genetic programming improves detection and modeling of gene-gene interactions in studies of human diseases. BMC Bioinforma. 4(1), 28 (2003)Google Scholar
  24. 24.
    M.D. Ritchie, A.A. Motsinger, W.S. Bush, C.S. Coffey, J.H. Moore, Genetic programming neural networks: a powerful bioinformatics tool for human genetics. Appl. Soft Comput. 7(1), 471–479 (2007)CrossRefGoogle Scholar
  25. 25.
    C. Ryan, J.J. Collins, M. O’Neill, Grammatical evolution: evolving programs for an arbitrary language, in Genetic Programming, First European Workshop, EuroGP’98, Paris, France, 14–15 April 1998, Proceedings, pp. 83–96 (1998).  https://doi.org/10.1007/BFb0055930
  26. 26.
    M. Sipper, Machine Nature: The Coming Age of Bio-Inspired Computing (McGraw-Hill, New York, 2002)Google Scholar
  27. 27.
    M. Sipper, R.S. Olson, J.H. Moore, Evolutionary computation: the next major transition of artificial intelligence? BioData Min. 10(1), 26 (2017). https://doi.org/10.1186/s13040-017-0147-3
  28. 28.
    O. Smart, I.G. Tsoulos, D. Gavrilis, G. Georgoulas, Grammatical evolution for features of epileptic oscillations in clinical intracranial electroencephalograms. Expert Syst. Appl. 38(8), 9991–9999 (2011)CrossRefGoogle Scholar
  29. 29.
    S.D. Turner, S.M. Dudek, M.D. Ritchie, ATHENA: a knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait loci. BioData Min. 3(1), 5 (2010)Google Scholar
  30. 30.
    K. Wolfson, S. Zakov, M. Sipper, M. Ziv-Ukelson, Have your spaghetti and eat it too: evolutionary algorithmics and post-evolutionary analysis. Genet. Program Evolvable Mach. 12(2), 121–160 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Biomedical InformaticsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUSA
  2. 2.Computer Science DepartmentBen-Gurion UniversityBeershebaIsrael

Personalised recommendations