Skip to main content

Macroscopic Models

  • Chapter
  • First Online:
Traffic Flow Modelling

Part of the book series: EURO Advanced Tutorials on Operational Research ((EUROATOR))

  • 1516 Accesses

Abstract

Macroscopic traffic flow models forms arguably the largest family in the model tree, see page 15. They describe traffic flow as if it were a continuum flow and are often compared to, or derived in analogy with, continuum models for fluids. Individual vehicles are not modeled, however aggregated variables such as (average) density and (average) flow are used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This assumption is related to the continuum assumption, stating that the flow can be described as if it were a continuum instead of individual particles. The validity of this assumption is discussed in more detail in Sect. 7.1.1.

Bibliography

  • Aw A, Klar A, Rascle M, Materne T (2002) Derivation of continuum traffic flow models from microscopic follow-the-leader models. SIAM J Appl Math 63(1):259–278

    Google Scholar 

  • Lebacque JP, Mammar S, Haj Salem H (2007) Generic second order traffic flow modelling. In: Allsop RE, Bell MGH, Heydecker BG (eds) Transportation and traffic theory 2007. Elsevier, Oxford, pp 755–776

    Google Scholar 

  • Leclercq L, Laval J, Chevallier E (2007) The Lagrangian coordinates and what it means for first order traffic flow models. In: Allsop RE, Bell MGH, Heydecker BG (eds) Transportation and traffic theory 2007. Elsevier, Oxford, pp 735–753

    Google Scholar 

  • Van Wageningen-Kessels FLM (2016) Framework to assess multi-class continuum traffic flow models. Transp Res Rec J Transp Res Board 2553:150–160

    Google Scholar 

  • Ansorge R (1990) What does the entropy condition mean in traffic flow theory? Transp Res B Methodol 24(2):133–143

    Google Scholar 

  • Aw A, Rascle M (2000) Resurrection of “second order models” of traffic flow? SIAM J Appl Math 60(3):916–938

    Google Scholar 

  • Calvert S, Snelder M, Taale H, van Wageningen-Kessels FLM, Hoogendoorn SP (2015) Bounded acceleration capacity drop in a Lagrangian formulation of the kinematic wave model with vehicle characteristics and unconstrained overtaking. In: Proceedings of 2015 IEEE 18th international conference on intelligent transportation systems, Gran Canaria, Spain

    Google Scholar 

  • Calvert SC, van Wageningen-Kessels FLM, Hoogendoorn SP (2018) Capacity drop through reaction times in heterogeneous traffic. J Traffic Transp Eng (English Edition) 5(2):96–104. https://doi.org/10.1016/j.jtte.2017.07.008

  • Chanut S, Buisson C (2003) Macroscopic model and its numerical solution for two-flow mixed traffic with different speeds and lengths. Transp Res Rec J Transp Res Board 1852:209–219

    Google Scholar 

  • Daganzo CF (1995) Requiem for second-order fluid approximations of traffic flow. Transp Res B Methodol 29(4):277–286

    Google Scholar 

  • Daganzo CF (2002) A behavioral theory of multi-lane traffic flow. Part I: long homogeneous freeway sections. Transp Res. B Methodol 36(2):131–158

    Google Scholar 

  • Daganzo CF, Lin WH, del Castillo J (1997) A simple physical principle for the simulation of freeways with special lanes and priority vehicles. Transp Res B Methodol 31(2):103–125

    Google Scholar 

  • Fan S, Work DB (2015) A heterogeneous multiclass traffic flow model with creeping. SIAM J Appl Math 75(2):813–835

    Google Scholar 

  • Gashaw SM, Goatin P, Harri J (2017) Modeling and analysis of mixed flow of cars and powered two wheelers. In: TRB 96th annual meeting compendium of papers, 17-05308

    Google Scholar 

  • Helbing D (2009) Reply to comment on “On the controversy around Daganzo’s requiem for and Aw-Rascle’s resurrection of second-order traffic flow models” by H.M. Zhang. Eur Phys J B Condensed Matter Complex Syst 69:569–570

    Google Scholar 

  • Hoogendoorn SP, van Lint JWC, Knoop VL (2009) Dynamic first-order modeling of phase-transition probabilities. In: Appert-Rolland C, Chevoir F, Gondret P, Lassarre S, Lebacque JP, Schreckenberg M (eds) Traffic and granular flow 07. Springer, Berlin, pp 85–92

    Google Scholar 

  • Jabari SE, Liu HX (2012) A stochastic model of traffic flow: theoretical foundations. Transp Res B Methodol 46(1):156–174

    Google Scholar 

  • Jabari SE, Liu HX (2013) A stochastic model of traffic flow: Gaussian approximation and estimation. Transp Res B Methodol 47(0):15–41

    Google Scholar 

  • Jin WL (2010) A kinematic wave theory of lane-changing traffic flow. Transp Res B Methodol 44:1001–1021

    Google Scholar 

  • Laval JA, Daganzo CF (2006) Lane-changing in traffic streams. Transp Res B Methodol 40(3):251–264

    Google Scholar 

  • Laval JA, Leclercq L (2013) The hamilton-Jacobi partial differential equation and the three representations of traffic flow. Transp Res B Methodol 52:17–30

    Google Scholar 

  • Lebacque JP (2003) Two-phase bounded-acceleration traffic flow model. Analytical solutions and applications. Transp Res Rec 1852:220–230

    Google Scholar 

  • Leclercq L (2009) Le modèle LWR : théorie, confrontation expérimentale et applications au milieu urbain. Habilitation a diriger des recherches, présentée devant l’Institut National des Sciences Appliquées de Lyon et l’Université Claude Bernard Lyon I, in French

    Google Scholar 

  • Lighthill MJ, Whitham GB (1955a) On kinematic waves I: flood movement in long rivers. Proc R Soc Lond A Math Phys Sci 229(1178):281–316

    Google Scholar 

  • Lighthill MJ, Whitham GB (1955b) On kinematic waves II: a theory of traffic flow on long crowded roads. Proc R Soc Lond A Math Phys Sci 229(1178):317–345

    Google Scholar 

  • Nair R, Mahmassani HS, Miller-Hooks E (2011) A porous flow approach to modeling heterogeneous traffic in disordered systems. Transp Res B Methodol 45(9):1331–1345, Selected Papers from the 19th ISTTT

    Google Scholar 

  • Payne HJ (1971) Models of freeway traffic and control. In: Simulation council proceedings, mathematical models of public systems, pp 51–61

    Google Scholar 

  • Richards PI (1956) Shock waves on the highway. Oper Res 4(1):42–51

    Google Scholar 

  • Srivastava A, Geroliminis N (2013) Empirical observations of capacity drop in freeway merges with ramp control and integration in a first-order model. Transp Res C Emerg Technol 30:161–177

    Google Scholar 

  • van Lint JWC, Hoogendoorn SP, Schreuder M (2008) Fastlane: a new multi-class first order traffic flow model. Transp Res Rec J Transp Res Board 2088:177–187

    Article  Google Scholar 

  • van Wageningen-Kessels FLM, van Lint JWC, Hoogendoorn SP, Vuik C (2010) Lagrangian formulation of a multi-class kinematic wave model. Transp Res Rec J Transp Res Board 2188:29–36

    Article  Google Scholar 

  • van Wageningen-Kessels FLM, van Lint JWC, Vuik C, Hoogendoorn SP (2014) New generic multi-classkinematic wave traffic flow model: model development and analysis of its properties. Transp Res Rec J Transp Res Board Traffic Flow Theory Charact 2(2422):50–60

    Article  Google Scholar 

  • Wong GCK, Wong SC (2002) A multi-class traffic flow model: an extension of LWR model with heterogeneous drivers. Transp Res A Policy Pract 36(9):827–841

    Article  Google Scholar 

  • Yuan K, Knoop VL, Hoogendoorn SP (2017) A kinematic wave model in Lagrangian coordinates incorporating capacity drop: application to homogeneous road stretches and discontinuities. Phys A Stat Mech Appl 465:472–485

    Article  Google Scholar 

  • Zhang HM (2002) A non-equilibrium traffic model devoid of gas-like behaviour. Transp Res B Methodol 36(3):275–290

    Article  Google Scholar 

  • Zhang HM (2003) Anisotropic property revisited—does it hold in multi-lane traffic? Transp Res B Methodol 37(6):561–577

    Article  Google Scholar 

Further Reading

  • Aw A, Klar A, Rascle M, Materne T (2002) Derivation of continuum traffic flow models from microscopic follow-the-leader models. SIAM J Appl Math 63(1):259–278

    Google Scholar 

  • Lebacque JP, Mammar S, Haj Salem H (2007) Generic second order traffic flow modelling. In: Allsop RE, Bell MGH, Heydecker BG (eds) Transportation and traffic theory 2007. Elsevier, Oxford, pp 755–776

    Google Scholar 

  • Leclercq L, Laval J, Chevallier E (2007) The Lagrangian coordinates and what it means for first order traffic flow models. In: Allsop RE, Bell MGH, Heydecker BG (eds) Transportation and traffic theory 2007. Elsevier, Oxford, pp 735–753

    Google Scholar 

  • Van Wageningen-Kessels FLM (2016) Framework to assess multi-class continuum traffic flow models. Transp Res Rec J Transp Res Board 2553:150–160

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kessels, F. (2019). Macroscopic Models. In: Traffic Flow Modelling. EURO Advanced Tutorials on Operational Research. Springer, Cham. https://doi.org/10.1007/978-3-319-78695-7_4

Download citation

Publish with us

Policies and ethics