Skip to main content

Microscopic Models

  • Chapter
  • First Online:
Traffic Flow Modelling

Part of the book series: EURO Advanced Tutorials on Operational Research ((EUROATOR))

  • 1562 Accesses

Abstract

The earliest family in the model tree incorporating dynamics are microscopic models. They are based on the assumption that drivers adjust their behaviour to that of the leading vehicle. Microscopic modelling has shown to be a fruitful line of thought, which is illustrated by the large part of the model tree taken up by this family (see the model tree on page 15. Microscopic models describe the longitudinal (car-following) and lateral (lane-changing) behaviour of individual vehicles. We focus on longitudinal behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Brackstone M, McDonald M (1999) Car-following: a historical review. Transp Res F Traffic Psychol Behav 2(4):181–196

    Article  Google Scholar 

  • Knospe W, Santen L, Schadschneider A, Schreckenberg M (2004) Empirical test for cellular automaton models of traffic flow. Phys Rev E Stat Nonlinear Soft Matter Phys 70(1):016115

    Article  Google Scholar 

  • Rahman M, Chowdhury M, Xie Y, He Y (2013) Review of microscopic lane-changing models and future research opportunities. IEEE Trans Intell Transp Syst 14(3):1942–1956

    Article  Google Scholar 

  • Saifuzzaman M, Zheng Z (2014) Incorporating human-factors in car-following models: a review of recent developments and research needs. Transp Res Part C Emerg Technol 48:379–403

    Article  Google Scholar 

  • Treiber M, Kanagaraj V (2015) Comparing numerical integration schemes for time-continuous car-following models. Phys A Stat Mech Appl 419:183–195

    Article  Google Scholar 

  • Wilson RE, Ward JA (2011) Car-following models: fifty years of linear stability analysis: a mathematical perspective. Transp Plan Technol 34(1):3–18

    Article  Google Scholar 

  • Bando M, Hasebe K, Nakayama A, Shibata A, Sugiyama Y (1995) Dynamical model of traffic congestion and numerical simulation. Phys Rev E Stat Nonlinear Soft Matter Phys 51:1035–1042

    Article  Google Scholar 

  • Bando M, Hasebe K, Nakanishi K, Nakayama A (1998) Analysis of optimal velocity model with explicit delay. Phys Rev E Stat Nonlinear Soft Matter Phys 58(5):5429–5435

    Article  Google Scholar 

  • Casas J, Ferrer JL, Garcia D, Perarnau J, Torday A (2010) Traffic simulation with Aimsun. In: Fundamentals of traffic simulation. International series in operations research and management science, vol 145. Springer, New York, pp 173–232

    Google Scholar 

  • Chandler R, Herman R, Montroll E (1958) Traffic dynamics: studies in car following. Oper Res 6(2):165–184

    Article  Google Scholar 

  • Gazis DC, Herman R, Rothery RW (1961) Nonlinear follow-the-leader models of traffic flow. Oper Res 9(4):545–567

    Article  Google Scholar 

  • Gipps PG (1981) A behavioural car-following model for computer simulation. Transp Res B Methodol 15(2):105–111

    Article  Google Scholar 

  • Hamdar SH, Treiber M, Mahmassani HS, Kesting A (2008) Modeling driver behavior as sequential risk-taking task. Transp Res Rec J Transp Res Board 2088:208–217

    Article  Google Scholar 

  • Helbing D, Schreckenberg M (1999) Cellular automata simulating experimental properties of traffic flow. Phys Rev E Stat Nonlinear Soft Matter Phys 59(3):2623

    Article  Google Scholar 

  • Kerner BS, Klenov SL, Wolf DE (2002) Cellular automata approach to three-phase traffic theory. J Phys A Math Gen 35(47):9971–10013

    Article  Google Scholar 

  • Kometani E, Sasaki T (1961) Dynamic behaviour of traffic with a nonlinear spacing-speed relationship. In: Herman R (ed) Theory of traffic flow 1959, proceedings. Elsevier, Amsterdam, pp 105–119

    Google Scholar 

  • Krajzewicz D, Erdmann J, Behrisch M, Bieker L (2012) Recent development and applications of SUMO – Simulation of Urban MObility. Int J Adv Syst Meas 5(3–4):128–138

    Google Scholar 

  • Laval JA, Leclercq L (2010) A mechanism to describe the formation and propagation of stop-and-go waves in congested freeway traffic. Philos Trans R Soc A Math Phys Eng Sci 368(1928):4519–4541

    Article  Google Scholar 

  • Michaels RM (1965) Perceptual factors in car following. In: The 2nd international symposium on the theory of traffic flow, 1963, pp 44–59

    Google Scholar 

  • Nagel K, Schreckenberg M (1992) A cellular automaton model for freeway traffic. J Phys I Fr 2(12):2221–2229

    Article  Google Scholar 

  • Newell GF (1961) Nonlinear effects in the dynamics of car following. Oper Res 9(2):209–229

    Article  Google Scholar 

  • Newell GF (2002) A simplified car-following theory: a lower order model. Transp Res B Methodol 36(3):195–205

    Article  Google Scholar 

  • Pipes LA (1953) An operational analysis of traffic dynamics. J Appl Phys 24(3):274–281

    Article  Google Scholar 

  • Treiber M, Kesting A (2013) Traffic flow dynamics: data, models and simulation. Springer, Berlin

    Book  Google Scholar 

  • Treiber M, Hennecke A, Helbing D (2000) Congested traffic states in empirical observations and microscopic simulations. Phys Rev E Stat Nonlinear Soft Matter Phys 62(2):1805–1824

    Article  Google Scholar 

  • Treiber M, Kesting A, Helbing D (2006) Delays, inaccuracies and anticipation in microscopic traffic models. Phys A Stat Mech Appl 360(1):71–88

    Article  Google Scholar 

  • Ward JA, Wilson RE (2011) Criteria for convective versus absolute string instability in car-following models. Proc R Soc A Math Phys Eng Sci 467:2185–2208

    Article  Google Scholar 

  • Wiedemann R (1974) Simulation des Strassenverkehrsflusses. Technical Report, Institute for Traffic Engineering, University of Karlsruhe

    Google Scholar 

  • Wilson RE (2008) Mechanisms for spatio-temporal pattern formation in highway traffic models. Philos Trans R Soc A Math Phys Eng Sci 366(1872):2017–2032

    Article  Google Scholar 

  • Yu L, ke Shi Z, Li T (2014) A new car-following model with two delays. Phys Lett A 378(4):348–357

    Google Scholar 

Further Reading

  • Aghabayk K, Sarvi M, Young W (2015) A state-of-the-art review of car-following models with particular considerations of heavy vehicles. Transp Rev 35(1):82–105

    Article  Google Scholar 

  • Brackstone M, McDonald M (1999) Car-following: a historical review. Transp Res F Traffic Psychol Behav 2(4):181–196

    Article  Google Scholar 

  • Knospe W, Santen L, Schadschneider A, Schreckenberg M (2004) Empirical test for cellular automaton models of traffic flow. Phys Rev E Stat Nonlinear Soft Matter Phys 70(1):016115

    Article  Google Scholar 

  • Orosz G, Wilson RE, Stépán G (2010) Traffic jams: dynamics and control. Philos Trans R Soc A Math Phys Eng Sci 368:4455–4479

    Article  Google Scholar 

  • Rahman M, Chowdhury M, Xie Y, He Y (2013) Review of microscopic lane-changing models and future research opportunities. IEEE Trans Intell Transp Syst 14(3):1942–1956

    Article  Google Scholar 

  • Saifuzzaman M, Zheng Z (2014) Incorporating human-factors in car-following models: a review of recent developments and research needs. Transp Res Part C Emerg Technol 48:379–403

    Article  Google Scholar 

  • Treiber M, Kanagaraj V (2015) Comparing numerical integration schemes for time-continuous car-following models. Phys A Stat Mech Appl 419:183–195

    Article  Google Scholar 

  • Wilson RE, Ward JA (2011) Car-following models: fifty years of linear stability analysis: a mathematical perspective. Transp Plan Technol 34(1):3–18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kessels, F. (2019). Microscopic Models. In: Traffic Flow Modelling. EURO Advanced Tutorials on Operational Research. Springer, Cham. https://doi.org/10.1007/978-3-319-78695-7_3

Download citation

Publish with us

Policies and ethics