Skip to main content

Integrating a Framework for Discovering Alternative App Stores in a Mobile App Monitoring Platform

  • Conference paper
  • First Online:
New Frontiers in Mining Complex Patterns (NFMCP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10785))

Included in the following conference series:

Abstract

Nowadays, implementing brand protection strategies has become a necessity for enterprises delivering services through dedicated apps. Increasingly, malicious developers spread unauthorized (fake, malicious, obsolete or deprecated) mobile apps through alternative distribution channels and marketplaces. In this work, we propose a framework for the early detection of these alternative markets advertised through social media such as Twitter or Facebook or hosted in the Dark Web. Specifically, it combines a data modeling approach and an ensemble learning technique, allowing to recommend web pages that are likely to represent alternative marketplaces. The framework has been implemented in a prototype system called Unauthorized App Store Discovery (UASD), and integrated in a security enterprise platform for the monitoring of malicious/unauthorized mobile apps. UASD allows to analyze web pages extracted from the Web and exploits a classification model to distinguish between real app stores and similar pages (i.e. blogs, forums, etc.) which can be erroneously returned by a common search engine. An experimental evaluation on a real dataset confirms the validity of the approach in terms of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2012.pdf.

  2. 2.

    http://www.intel.se/content/dam/www/public/us/en/documents/reports/mcafee-threats-quarterly-report.pdf.

  3. 3.

    https://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011.

  4. 4.

    http://www.silicon.co.uk/security/fake-pokemon-go-mobile-apps-195141.

  5. 5.

    http://www.pokemongo.com/.

  6. 6.

    http://www.posteitaliane.it/en/innovation/technology_centre/certcyb.shtml.

  7. 7.

    https://en.wikipedia.org/wiki/Google_hacking.

  8. 8.

    https://www.kaggle.com/c/otto-group-product-classification-challenge/discussion/14335.

  9. 9.

    http://www.posteitaliane.it/en/innovation/technology_centre/certcyb.shtml.

References

  1. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Buckland, M., Gey, F.: The relationship between recall and precision. J. Am. Soc. Inf. Sci. 45(1), 12–19 (1994)

    Article  Google Scholar 

  3. Costa, G., Guarascio, M., Manco, G., Ortale, R., Ritacco, E.: Rule learning with probabilistic smoothing. In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2009. LNCS, vol. 5691, pp. 428–440. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03730-6_34

    Chapter  Google Scholar 

  4. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theor. 13(1), 21–27 (2006)

    Article  MATH  Google Scholar 

  5. Hall, M.A.: Correlation-based feature selection for machine learning. Technical report (1999)

    Google Scholar 

  6. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, New York (2002). https://doi.org/10.1007/b98835. http://www.worldcat.org/isbn/0387954422

    MATH  Google Scholar 

  7. Jurek, A., Bi, Y., Wu, S., Nugent, C.: A survey of commonly used ensemble-based classification techniques. Knowl. Eng. Rev. 29(5), 551–581 (2014)

    Article  Google Scholar 

  8. Koehn, P.: Combining multiclass maximum entropy text classifiers with neural network voting. In: Ranchhod, E., Mamede, N.J. (eds.) PorTAL 2002. LNCS (LNAI), vol. 2389, pp. 125–131. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45433-0_19

    Chapter  Google Scholar 

  9. Langley, P., Iba, W., Thompson, K.: An analysis of Bayesian classifiers. In: Proceedings of the Tenth National Conference on Artificial Intelligence, AAAI 1992, pp. 223–228. AAAI Press (1992)

    Google Scholar 

  10. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  11. Loglisci, C., Appice, A., Malerba, D.: Collective regression for handling autocorrelation of network data in a transductive setting. J. Intell. Inf. Syst. 46(3), 447–472 (2016)

    Article  Google Scholar 

  12. McCullagh, P., Nelder, J.A.: Generalized Linear Models, 2nd edn. Chapman & Hall, London (1989)

    Book  MATH  Google Scholar 

  13. Phillips, S.J., Dudík, M., Schapire, R.E.: A maximum entropy approach to species distribution modeling. In: Proceedings of the Twenty-First International Conference on Machine Learning, ICML 2004, p. 83. ACM, New York (2004)

    Google Scholar 

  14. Powers, D.M.W.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)

    MathSciNet  Google Scholar 

  15. Purushotham, S., Tripathy, B.K.: Evaluation of classifier models using stratified tenfold cross validation techniques. In: Krishna, P.V., Babu, M.R., Ariwa, E. (eds.) ObCom 2011. CCIS, vol. 270, pp. 680–690. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29216-3_74

    Chapter  Google Scholar 

  16. Rastogi, V., Chen, Y., Jiang, X.: Catch me if you can: evaluating android anti-malware against transformation attacks. Trans. Inf. Forensics Secur. 9(1), 99–108 (2014)

    Article  Google Scholar 

  17. van Rijsbergen, C.J.: Information Retrieval, 2nd edn. Butterworth-Heinemann, Newton (1979)

    MATH  Google Scholar 

  18. Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5(2), 197–227 (1990)

    Google Scholar 

  19. Webb, G.I., Boughton, J.R., Wang, Z.: Not so Naive Bayes: aggregating one-dependence estimators. Mach. Learn. 58(1), 5–24 (2005)

    Article  MATH  Google Scholar 

  20. Wilson, J.M.: Brand protection 2020. Technical reports, Michigan State University (2015)

    Google Scholar 

  21. Wolpert, D.H.: Stacked generalization. Neural Netw. 5, 241–259 (1992)

    Article  Google Scholar 

  22. Zhang, H., Jiang, L., Su, J.: Hidden Naive Bayes. In: Proceedings of the 20th National Conference on Artificial Intelligence, AAAI 2005, vol. 2. AAAI Press (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Guarascio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guarascio, M., Ritacco, E., Biondo, D., Mammoliti, R., Toma, A. (2018). Integrating a Framework for Discovering Alternative App Stores in a Mobile App Monitoring Platform. In: Appice, A., Loglisci, C., Manco, G., Masciari, E., Ras, Z. (eds) New Frontiers in Mining Complex Patterns. NFMCP 2017. Lecture Notes in Computer Science(), vol 10785. Springer, Cham. https://doi.org/10.1007/978-3-319-78680-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78680-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78679-7

  • Online ISBN: 978-3-319-78680-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics