Complex Localization in the Multiple Instance Learning Context

  • Dan-Ovidiu Graur
  • Răzvan-Alexandru Mariş
  • Rodica Potolea
  • Mihaela Dînşoreanu
  • Camelia Lemnaru
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10785)


This paper introduces two approaches for solving Multiple Instance Problems (MIP) in which the traditional instance localization assumption is not met. We introduce a technique which transforms individual feature values in the attempt to align the data to the MIP localization assumption and a new MIP learning algorithm which identifies a region enclosing the majority (negative) class while excluding at least one instance from each positive (minority class) bag. The proposed methods are evaluated on synthetic datasets, as well as on a real-world manufacturing defect identification dataset. The real-world dataset poses additional challenges: data with noise, large imbalance and overlap.


Multiple instance learning Axis-Parallel Hyper-Rectangle Feature value transformation R-APR Classification 


  1. 1.
    Alpaydin, E., Cheplygina, V., Loog, M., Tax, D.M.: Single- vs. multiple-instance classification. Pattern Recogn. 48(9), 2831–2838 (2015)CrossRefGoogle Scholar
  2. 2.
    Amores, J.: Multiple instance classification: review, taxonomy and comparative study. Artif. Intell. 201, 81–105 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning. In: Proceedings of the 15th International Conference on Neural Information Processing Systems, NIPS 2002, pp. 577–584. MIT Press, Cambridge (2002)Google Scholar
  4. 4.
    Bunescu, R.C., Mooney, R.J.: Multiple instance learning for sparse positive bags. In: Proceedings of the 24th International Conference on Machine Learning, ICML 2007, pp. 105–112. ACM, New York (2007)Google Scholar
  5. 5.
    Chevaleyre, Y., Zucker, J.-D.: Solving multiple-instance and multiple-part learning problems with decision trees and rule sets. Application to the mutagenesis problem. In: Stroulia, E., Matwin, S. (eds.) AI 2001. LNCS (LNAI), vol. 2056, pp. 204–214. Springer, Heidelberg (2001). CrossRefGoogle Scholar
  6. 6.
    Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 89(1–2), 31–71 (1997)CrossRefzbMATHGoogle Scholar
  7. 7.
    Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In: Proceedings of the 1997 Conference on Advances in Neural Information Processing Systems 10, NIPS 1997, pp. 570–576. MIT Press, Cambridge (1998)Google Scholar
  8. 8.
    Ramon, J., Raedt, L.D.: Multi instance neural networks. In: Proceedings of ICML 2000, Workshop on Attribute-Value and Relational Learning (2000)Google Scholar
  9. 9.
    Ray, S., Craven, M.: Supervised versus multiple instance learning: an empirical comparison. In: Proceedings of the 22nd International Conference on Machine Learning, ICML 2005, pp. 697–704. ACM, New York (2005)Google Scholar
  10. 10.
    Ray, S., Page, D.: Multiple instance regression. In: Proceedings of the Eighteenth International Conference on Machine Learning, ICML 2001, pp. 425–432. Morgan Kaufmann Publishers Inc., San Francisco (2001)Google Scholar
  11. 11.
    Wang, J., Zucker, J.D.: Solving the multiple-instance problem: a lazy learning approach. In: Proceedings of the Seventeenth International Conference on Machine Learning, ICML 2000, pp. 1119–1126. Morgan Kaufmann Publishers Inc., San Francisco (2000)Google Scholar
  12. 12.
    Weidmann, N., Frank, E., Pfahringer, B.: A two-level learning method for generalized multi-instance problems. In: Lavrač, N., Gamberger, D., Blockeel, H., Todorovski, L. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 468–479. Springer, Heidelberg (2003). CrossRefGoogle Scholar
  13. 13.
    Zhang, Q., Goldman, S.A.: EM-DD: an improved multiple-instance learning technique. In: Advances in Neural Information Processing Systems, pp. 1073–1080. MIT Press (2001)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Dan-Ovidiu Graur
    • 1
  • Răzvan-Alexandru Mariş
    • 1
  • Rodica Potolea
    • 1
  • Mihaela Dînşoreanu
    • 1
  • Camelia Lemnaru
    • 1
  1. 1.Technical University of Cluj-NapocaCluj-NapocaRomania

Personalised recommendations