Advertisement

Structuring the Output Space in Multi-label Classification by Using Feature Ranking

  • Stevanche Nikoloski
  • Dragi Kocev
  • Sašo Džeroski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10785)

Abstract

Motivated by the increasing interest for the task of multi-label classification (MLC) in recent years, in this study we investigate a new approach for decomposition of the output space with the goal to improve the predictive performance. Namely, the structuring of the output/label space is performed by constructing a label hierarchy and then approaching the MLC task as a task of hierarchical multi-label classification (HMLC). Our approach is as follows. We first perform feature ranking for each of the labels separately and then represent each of the labels with its corresponding feature ranking. The construction of the hierarchy is performed by the (hierarchical) clustering of the feature rankings. To this end, we employ four clustering methods: agglomerative clustering with single linkage, agglomerative clustering with complete linkage, balanced k-means and predictive clustering trees. We then use predictive clustering trees to estimate the influence of the constructed hierarchies, i.e., we compare the predictive performance of models without exploiting the hierarchy and models using hierarchies constructed using label co-occurrences or per label feature rankings. Moreover, we investigate the influence of the hierarchy in the context of single models and ensembles of models. We evaluate the proposed approach across 8 datasets. The results show that the proposed method can yield predictive performance boost across several evaluation measures.

Keywords

Multi-label classification Hierarchy construction Feature ranking Structuring of the label space 

Notes

Acknowledgment

We would like to acknowledge the support of the European Commission through the project MAESTRA - Learning from Massive, Incompletely annotated, and Structured Data (Grant number ICT-2013-612944), the project LANDMARK - Land management, assessment, research, knowledge base (H2020 Grant number 635201) and Teagasc Walsh Fellowship Programme.

References

  1. 1.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Dimitrovski, I., Kocev, D., Loskovska, S., Džeroski, S.: Fast and scalable image retrieval using predictive clustering trees. In: International Conference on Discovery Science, pp. 33–48 (2013)Google Scholar
  3. 3.
    Huynh-Thu, V.A., Irrthum, Wehenkel, L., Geurts, P.: Inferring regulatory networks from expression data using tree-based methods. PLos One 5(9) (2010)Google Scholar
  4. 4.
    Kocev, D.: Ensembles for predicting structured outputs. Ph.D. thesis, IPS Jožef Stefan, Ljubljana, Slovenia (2011)Google Scholar
  5. 5.
    Kocev, D., Vens, C., Struyf, J., Džeroski, S.: Tree ensembles for predicting structured outputs. Pattern Recogn. 46(3), 817–833 (2013)CrossRefGoogle Scholar
  6. 6.
    Madjarov, G., Dimitrovski, I., Gjorgjevikj, D., Džeroski, S.: Evaluation of different data-derived label hierarchies in multi-label classification. In: International Workshop on New Frontiers in Mining Complex Patterns, pp. 19–37 (2014)Google Scholar
  7. 7.
    Madjarov, G., Kocev, D., Gjorgjevikj, D., Džeroski, S.: An extensive experimental comparison of methods for multi-label learning. Pattern Recogn. 45(9), 3084–3104 (2012)CrossRefGoogle Scholar
  8. 8.
    Malinen, M.I., Fränti, P.: Balanced K-means for clustering. In: Fränti, P., Brown, G., Loog, M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp. 32–41. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44415-3_4 Google Scholar
  9. 9.
    Silla, C.N., Freitas, A.: A survey of hierarchical classification across different application domains. Data Min. Knowl. Disc. 22, 31–72 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Struyf, J., Džeroski, S.: Constraint based induction of multi-objective regression trees. In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 222–233. Springer, Heidelberg (2006).  https://doi.org/10.1007/11733492_13 CrossRefGoogle Scholar
  11. 11.
    Szymanski, P., Kajdanowicz, T., Kersting, K.: How is a data-driven approach better than random choice in label space division for multi-label classification? Entropy 18, 282 (2016)CrossRefGoogle Scholar
  12. 12.
    Tsoumakas, G., Katakis, I.: Multi label classification: an overview. Int. J. Data Warehouse Min. 3(3), 1–13 (2007)CrossRefGoogle Scholar
  13. 13.
    Tsoumakas, G., Katakis, I., Vlahavas, I.: Effective and efficient multilabel classification in domains with large number of labels. In: Proceedings of the ECML/PKDD Workshop on Mining Multidimensional Data, pp. 30–44 (2008)Google Scholar
  14. 14.
    Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 667–685. Springer, Boston (2010).  https://doi.org/10.1007/978-0-387-09823-4_34 Google Scholar
  15. 15.
    Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision trees for hierarchical multi-label classification. Mach. Learn. 73(2), 185–214 (2008)CrossRefGoogle Scholar
  16. 16.
    Verikas, A., Gelzinis, A., Bacauskiene, M.: Mining data with random forests: a survey and results of new tests. Pattern Recogn. 44(2), 330–349 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Stevanche Nikoloski
    • 2
    • 3
  • Dragi Kocev
    • 1
    • 2
  • Sašo Džeroski
    • 1
    • 2
  1. 1.Department of Knowledge TechnologiesJožef Stefan InstituteLjubljanaSlovenia
  2. 2.Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
  3. 3.Teagasc, Environment Soils and Land-Use DepartmentCounty WexfordIreland

Personalised recommendations