Ahnert, S.E., Fink, T.M.A.: Form and function in gene regulatory networks: the structure of network motifs determines fundamental properties of their dynamical state space. J. Roy. Soc. Interface 13(120), 278–289 (2016)
CrossRef
Google Scholar
Albert, R.: Scale-free networks in cell biology. J. Cell Sci. 118(Pt 21), 4947–4957 (2005). https://doi.org/10.1242/jcs.02714
CrossRef
Google Scholar
Aldana, M.: Boolean dynamics of networks with scale-free topology. Phys. D Nonlinear Phenom. 185(1), 45–66 (2003)
MathSciNet
CrossRef
MATH
Google Scholar
Balleza, E., Alvarez-Buylla, E.R., Chaos, A., Kauffman, S., Shmulevich, I., Aldana, M.: Critical dynamics in genetic regulatory networks: examples from four kingdoms. PLoS One 3(6), e2456 (2008)
CrossRef
Google Scholar
Bastolla, U., Parisi, G.: A numerical study of the critical line of Kauffman networks. J. Theor. Biol. 187(1), 117–133 (1997)
CrossRef
Google Scholar
Benedettini, S., Roli, A., Serra, R., Villani, M.: Automatic design of boolean networks for modelling cell differentiation. In: Cagnoni, S., Mirolli, M., Villani, M. (eds.) Evolution, Complexity and Artificial Life, pp. 77–89. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-37577-4_5
CrossRef
Google Scholar
Braccini, M., Roli, A., Villani, M., Serra, R.: Automatic design of boolean networks for cell differentiation. In: Rossi, F., Piotto, S., Concilio, S. (eds.) WIVACE 2016. CCIS, vol. 708, pp. 91–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57711-1_8
CrossRef
Google Scholar
Chaos, Á., Aldana, M., Espinosa-Soto, C., de León, B.G.P., Arroyo, A.G., Alvarez-Buylla, E.R.: From genes to flower patterns and evolution: dynamic models of gene regulatory networks. J. Plant Growth Regul. 25(4), 278–289 (2006)
CrossRef
Google Scholar
Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: Automode: a novel approach to the automatic design of control software for robot swarms. Swarm Intell. 8(2), 89–112 (2014)
CrossRef
Google Scholar
Harris, S.E., Sawhill, B.K., Wuensche, A., Kauffman, S.: A model of transcriptional regulatory networks based on biases in the observed regulation rules. Complexity 7(4), 23–40 (2002)
CrossRef
Google Scholar
Hermsen, R., Ursem, B., ten Wolde, P.R.: Combinatorial gene regulation using auto-regulation. PLoS Comput. Biol. 6(6), 1–13 (2010). https://doi.org/10.1371/journal.pcbi.1000813
MathSciNet
CrossRef
Google Scholar
Hoffmann, M., Chang, H.H., Huang, S., Ingber, D.E., Loeffler, M., Galle, J.: Noise-driven stem cell and progenitor population dynamics. PLoS One 3(8), 1–10 (2008). https://doi.org/10.1371/journal.pone.0002922
Google Scholar
Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)
MathSciNet
CrossRef
Google Scholar
Kauffman, S.A.: The origins of order. Oxford University Press, Oxford (1993)
Google Scholar
Kauffman, S., Peterson, C., Samuelsson, B., Troein, C.: Random boolean network models and the yeast transcriptional network. Proc. Nat. Acad. Sci. 100(25), 14796–14799 (2003)
CrossRef
Google Scholar
Kauffman, S.A.: Homeostasis and differentiation in random genetic control networks. Nature 224(5215), 177–178 (1969). http://www.nature.com/doifinder/10.1038/224177a0
CrossRef
Google Scholar
McAdams, H., Arkin, A.: Stochastic mechanisms in gene expression. Proc. Nat. Acad. Sci. 94(3), 814–819 (1997). http://www.pnas.org/content/94/3/814.abstract
CrossRef
Google Scholar
Montagna, S., Viroli, M., Roli, A.: A framework supporting multi-compartment stochastic simulation and parameter optimisation for investigating biological system development. Simul. Trans. Soc. Model. Simul. Int. 91, 666–685 (2015)
Google Scholar
Paroni, A., Graudenzi, A., Caravagna, G., Damiani, C., Mauri, G., Antoniotti, M.: CABeRNET: a cytoscape app for augmented boolean models of gene regulatory networks. BMC Bioinf. 17, 64–75 (2016)
CrossRef
Google Scholar
Pinho, R., Garcia, V., Irimia, M., Feldman, M.W.: Stability depends on positive autoregulation in boolean gene regulatory networks. PLoS Comput. Biol. 10(11), 1–14 (2014). https://doi.org/10.1371/journal.pcbi.1003916
CrossRef
Google Scholar
Serra, R., Villani, M., Graudenzi, A., Colacci, A., Kauffman, S.A.: The simulation of gene knock-out in scale-free random boolean models of genetic networks. Netw. Heterog. Media 2(3), 333–343 (2008)
MathSciNet
CrossRef
MATH
Google Scholar
Serra, R., Villani, M., Semeria, A.: Genetic network models and statistical properties of gene expression data in knock-out experiments. J. Theor. Biol. 227, 149–157 (2004)
MathSciNet
CrossRef
Google Scholar
Serra, R., Villani, M., Agostini, L.: On the dynamics of random boolean networks with scale-free outgoing connections. Phys. A: Stat. Mech. Appl. 339(3–4), 665–673 (2004). http://www.sciencedirect.com/science/article/B6TVG-4C477JP-1/2/f6e8e45217874ad364008f770689a964
MathSciNet
CrossRef
Google Scholar
Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31(1), 64–68 (2002)
CrossRef
Google Scholar
Shetty, R.P., Endy, D., Knight, T.F.: Engineering biobrick vectors from biobrick parts. J. Biol. Eng. 2(1), 5 (2008). https://doi.org/10.1186/1754-1611-2-5
CrossRef
Google Scholar
Shmulevich, I., Dougherty, E., Kim, S., Zhang, W.: Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinf. 18(2), 261–274 (2002)
CrossRef
Google Scholar
Shmulevich, I., Kauffman, S.A., Aldana, M.: Eukaryotic cells are dynamically ordered or critical but not chaotic. Proc. Nat. Acad. Sci. U.S.A. 102(38), 13439–13444 (2005). http://www.ncbi.nlm.nih.gov/pubmed/16155121%5Cnwww.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1224670
CrossRef
Google Scholar
Villani, M., Barbieri, A., Serra, R.: A dynamical model of genetic networks for cell differentiation. PLoS One 6(3), e17703 (2011)
CrossRef
Google Scholar
Yeger-Lotem, E., Sattath, S., Kashtan, N., Itzkovitz, S., Milo, R., Pinter, R.Y., Alon, U., Margalit, H.: Network motifs in integrated cellular networks of transcription protein interaction. Proc. Nat. Acad. Sci. U.S.A. 101(16), 5934–5939 (2004). http://www.pnas.org/content/101/16/5934.abstract
CrossRef
Google Scholar