Advertisement

The Impact of Self-loops in Random Boolean Network Dynamics: A Simulation Analysis

  • Sara Montagna
  • Michele Braccini
  • Andrea Roli
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 830)

Abstract

Random Boolean Networks (RBNs) are a popular and successful model of gene regulatory networks, especially for analysing emergent properties of cell dynamics. Since completely random networks are unrealistic, some work has been done to extend the original model with structural and functional properties observed in biological networks. Among recurring motifs identified by experimental studies, auto-regulation seems to play a significant role in gene regulatory networks. In this paper we present a model of auto-regulatory mechanisms by introducing self-loops in RBNs. Experiments are performed to analyse the impact of self-loops in the RBNs asymptotic behaviour. Results show that the number of attractors increases with the amount of self-loops, while their robustness and stability decrease.

References

  1. 1.
    Ahnert, S.E., Fink, T.M.A.: Form and function in gene regulatory networks: the structure of network motifs determines fundamental properties of their dynamical state space. J. Roy. Soc. Interface 13(120), 278–289 (2016)CrossRefGoogle Scholar
  2. 2.
    Albert, R.: Scale-free networks in cell biology. J. Cell Sci. 118(Pt 21), 4947–4957 (2005).  https://doi.org/10.1242/jcs.02714CrossRefGoogle Scholar
  3. 3.
    Aldana, M.: Boolean dynamics of networks with scale-free topology. Phys. D Nonlinear Phenom. 185(1), 45–66 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Balleza, E., Alvarez-Buylla, E.R., Chaos, A., Kauffman, S., Shmulevich, I., Aldana, M.: Critical dynamics in genetic regulatory networks: examples from four kingdoms. PLoS One 3(6), e2456 (2008)CrossRefGoogle Scholar
  5. 5.
    Bastolla, U., Parisi, G.: A numerical study of the critical line of Kauffman networks. J. Theor. Biol. 187(1), 117–133 (1997)CrossRefGoogle Scholar
  6. 6.
    Benedettini, S., Roli, A., Serra, R., Villani, M.: Automatic design of boolean networks for modelling cell differentiation. In: Cagnoni, S., Mirolli, M., Villani, M. (eds.) Evolution, Complexity and Artificial Life, pp. 77–89. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-37577-4_5CrossRefGoogle Scholar
  7. 7.
    Braccini, M., Roli, A., Villani, M., Serra, R.: Automatic design of boolean networks for cell differentiation. In: Rossi, F., Piotto, S., Concilio, S. (eds.) WIVACE 2016. CCIS, vol. 708, pp. 91–102. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57711-1_8CrossRefGoogle Scholar
  8. 8.
    Chaos, Á., Aldana, M., Espinosa-Soto, C., de León, B.G.P., Arroyo, A.G., Alvarez-Buylla, E.R.: From genes to flower patterns and evolution: dynamic models of gene regulatory networks. J. Plant Growth Regul. 25(4), 278–289 (2006)CrossRefGoogle Scholar
  9. 9.
    Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: Automode: a novel approach to the automatic design of control software for robot swarms. Swarm Intell. 8(2), 89–112 (2014)CrossRefGoogle Scholar
  10. 10.
    Harris, S.E., Sawhill, B.K., Wuensche, A., Kauffman, S.: A model of transcriptional regulatory networks based on biases in the observed regulation rules. Complexity 7(4), 23–40 (2002)CrossRefGoogle Scholar
  11. 11.
    Hermsen, R., Ursem, B., ten Wolde, P.R.: Combinatorial gene regulation using auto-regulation. PLoS Comput. Biol. 6(6), 1–13 (2010).  https://doi.org/10.1371/journal.pcbi.1000813MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hoffmann, M., Chang, H.H., Huang, S., Ingber, D.E., Loeffler, M., Galle, J.: Noise-driven stem cell and progenitor population dynamics. PLoS One 3(8), 1–10 (2008).  https://doi.org/10.1371/journal.pone.0002922Google Scholar
  13. 13.
    Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kauffman, S.A.: The origins of order. Oxford University Press, Oxford (1993)Google Scholar
  15. 15.
    Kauffman, S., Peterson, C., Samuelsson, B., Troein, C.: Random boolean network models and the yeast transcriptional network. Proc. Nat. Acad. Sci. 100(25), 14796–14799 (2003)CrossRefGoogle Scholar
  16. 16.
    Kauffman, S.A.: Homeostasis and differentiation in random genetic control networks. Nature 224(5215), 177–178 (1969). http://www.nature.com/doifinder/10.1038/224177a0CrossRefGoogle Scholar
  17. 17.
    McAdams, H., Arkin, A.: Stochastic mechanisms in gene expression. Proc. Nat. Acad. Sci. 94(3), 814–819 (1997). http://www.pnas.org/content/94/3/814.abstractCrossRefGoogle Scholar
  18. 18.
    Montagna, S., Viroli, M., Roli, A.: A framework supporting multi-compartment stochastic simulation and parameter optimisation for investigating biological system development. Simul. Trans. Soc. Model. Simul. Int. 91, 666–685 (2015)Google Scholar
  19. 19.
    Paroni, A., Graudenzi, A., Caravagna, G., Damiani, C., Mauri, G., Antoniotti, M.: CABeRNET: a cytoscape app for augmented boolean models of gene regulatory networks. BMC Bioinf. 17, 64–75 (2016)CrossRefGoogle Scholar
  20. 20.
    Pinho, R., Garcia, V., Irimia, M., Feldman, M.W.: Stability depends on positive autoregulation in boolean gene regulatory networks. PLoS Comput. Biol. 10(11), 1–14 (2014).  https://doi.org/10.1371/journal.pcbi.1003916CrossRefGoogle Scholar
  21. 21.
    Serra, R., Villani, M., Graudenzi, A., Colacci, A., Kauffman, S.A.: The simulation of gene knock-out in scale-free random boolean models of genetic networks. Netw. Heterog. Media 2(3), 333–343 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Serra, R., Villani, M., Semeria, A.: Genetic network models and statistical properties of gene expression data in knock-out experiments. J. Theor. Biol. 227, 149–157 (2004)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Serra, R., Villani, M., Agostini, L.: On the dynamics of random boolean networks with scale-free outgoing connections. Phys. A: Stat. Mech. Appl. 339(3–4), 665–673 (2004). http://www.sciencedirect.com/science/article/B6TVG-4C477JP-1/2/f6e8e45217874ad364008f770689a964MathSciNetCrossRefGoogle Scholar
  24. 24.
    Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31(1), 64–68 (2002)CrossRefGoogle Scholar
  25. 25.
    Shetty, R.P., Endy, D., Knight, T.F.: Engineering biobrick vectors from biobrick parts. J. Biol. Eng. 2(1), 5 (2008).  https://doi.org/10.1186/1754-1611-2-5CrossRefGoogle Scholar
  26. 26.
    Shmulevich, I., Dougherty, E., Kim, S., Zhang, W.: Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinf. 18(2), 261–274 (2002)CrossRefGoogle Scholar
  27. 27.
    Shmulevich, I., Kauffman, S.A., Aldana, M.: Eukaryotic cells are dynamically ordered or critical but not chaotic. Proc. Nat. Acad. Sci. U.S.A. 102(38), 13439–13444 (2005). http://www.ncbi.nlm.nih.gov/pubmed/16155121%5Cnwww.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1224670CrossRefGoogle Scholar
  28. 28.
    Villani, M., Barbieri, A., Serra, R.: A dynamical model of genetic networks for cell differentiation. PLoS One 6(3), e17703 (2011)CrossRefGoogle Scholar
  29. 29.
    Yeger-Lotem, E., Sattath, S., Kashtan, N., Itzkovitz, S., Milo, R., Pinter, R.Y., Alon, U., Margalit, H.: Network motifs in integrated cellular networks of transcription protein interaction. Proc. Nat. Acad. Sci. U.S.A. 101(16), 5934–5939 (2004). http://www.pnas.org/content/101/16/5934.abstractCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science and Engineering, Campus of CesenaAlma Mater Studiorum, Università di BolognaCesenaItaly

Personalised recommendations